Cho tam giác ABC có BC = a, các đường trung tuyến BD, CE. Lấy các điểm M, N
trên cạnh BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm
của AN và CE.
a) Chứng minh: EM // AN và 2EM = AN.
b) Chứng minh: DN // AM và 2DN = AM.
c) Chứng minh tứ giác BEDC là hình thang.
d) Chứng minh I là trung điểm của BD, K là trung điểm của EC.
e) Tính độ dài IK theo a.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
2 tháng 7 2019
Bạn tham kháo nha:
https://olm.vn/hoi-dap/detail/8338961574.html
T
1 tháng 8 2019
Dễ chứng minh I là trung điểm BD, K là trung điểm CE.
Ta có tính chất: Trong hình thang, đoạn thẳng nối trung điểm hai đường chéo song song với hai đáy và có độ dài bằng nửa hiệu độ dài hai đáy. (chưa nghĩ ra cách chứng minh)
Do đó xét hình thang BEDC có I và K là trung điểm hai đường chéo nên
\(IK=\frac{BC-ED}{2}=\frac{BC-\frac{1}{2}BC}{2}=\frac{\frac{1}{2}BC}{2}=\frac{1}{4}BC=\frac{a}{4}\)
Từ từ nghĩ cách chứng minh tính chất trên nha!