cho a+b+c+d=0 chứng minh rằng a^3+b^3+c^3+d^3=3(ac-bd)*(b-d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
Và \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Ta có a + b + c + d = 0
\(\Leftrightarrow\)a+c = -( b+ d)
\(\Leftrightarrow\)(a+c)3 = - ( b+d)3
\(\Leftrightarrow\)a3 + c3 + 3ac.(a+c) = - [ b3 + d3 + 3bd( b+d) ]
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd(b+d) - 3ac(a+c)
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd( b+d) + 3ac( b+d)
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = 3( ac - bd)(b +d) (đpcm)
Câu hỏi của ✰✰ βєsէ ℱƐƝƝIƘ ✰✰ - Toán lớp 8 - Học toán với OnlineMath
Giải:
\(a+b+c+d=0\)
\(\Leftrightarrow a+c=-b-d\)
\(\Leftrightarrow a+c=-\left(b+d\right)\)
Ta có:
\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-\left(b^3+3b^2d+3bd^2+d^3\right)\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\)
\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-3cd\left(b+d\right)-d^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
Vậy ...
Ta có:\(a+b+c+d=0\)
\(a+c=-\left(b+d\right)\)
\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+c^3+3ac\left(a+c\right)=-\left[b^3+d^3+3bd\left(b+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\left(đpcm\right)\)
Sửa đề một chút : Cmr a3 + b3 + c3 + d3 = 3 ( ac - bd ) ( b + d )
a + b + c + d = 0
=> a + c = - ( b + d )
\(\Leftrightarrow\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-d^3-3b^2d-3bd^2\)
\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-d^3-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)( đpcm )