chứng minh rằng có vô số các phân số nằm giữa hai phân số a/m và b/m với a,b,m thuộc N, m>0 và a>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n
Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)
\(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)
Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
2.Tương tự
Vì \(\frac{a}{b}>1\left(a,b\inℕ,b\ne0\right)\) nên \(a>b\)
\(a>b\Rightarrow a=b+n\left(n\inℕ^∗\right)\)
Ta có : \(\frac{a}{b}=\frac{b+n}{b}=1+\frac{n}{b}\) ; \(\frac{a+m}{b+m}=\frac{b+m+n}{b+m}=1+\frac{n}{b+m}\)
Mà \(\frac{n}{b}>\frac{n}{b+m}\) nên \(1+\frac{n}{b}>1+\frac{n}{b+m}\)
hay \(\frac{a}{b}>\frac{a+m}{b+m}\) (đpcm)
Cho P là giao điểm của ba đường phân giác trong của tam giác ABC. Đường thẳng qua P và vuông góc với CP cắt các tia CA, CB tại M, N. Chứng minh rằng:
a) Điểm M nằm giữa hai điểm C và A, điểm N nằm giữa hai điểm C và B.
b)
c) AP2.BC+BP2.AC+CP2.AB=AB.AC.BC
phần b đây các bạn