K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

Từ điều kiện đề bài suy ra $zx+zy=xy$

Khi đó:

$x^2+y^2+z^2=(x+y)^2-2xy+z^2=(x+y)^2+z^2-2(zx+zy)=(x+y)^2+z^2-2z(x+y)=(x+y-z)^2$

$\Rightarrow \sqrt{x^2+y^2+z^2}=|x+y-z|$

Vì $x,y,z$ là các số hữu tỉ nên $\sqrt{x^2+y^2+z^2}=|x+y-z|$ là số hữu tỉ (đpcm)

P/s: Bạn chú ý lần sau gõ đề bằng công thức toán.

27 tháng 8 2020

Theo giả thiết ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{z}\Leftrightarrow xz+yz=xy\)

\(\Leftrightarrow xy-xz-yz=0\Leftrightarrow x^2+y^2+z^2+xy-xz-yz=x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y-z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow\sqrt{x^2+y^2+z^2}=\left|x+y-z\right|\)

Mà x, y, z là các số hữu tỉ nên \(\left|x+y-z\right|\)là số hữu tỉ

Vậy \(\sqrt{x^2+y^2+z^2}\)là số hữu tỉ (đpcm)

NV
6 tháng 10 2021

Ta có:

\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)

\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ

10 tháng 10 2021

Tham khảo nha ông:

undefined

24 tháng 8 2016

1/ a/ x = 1/2, y = -1

b/ x = -1/2 ; y = 1

19 tháng 3 2019

Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp

Đây là dề thi HSG toán cấp tỉnh Đồng Tháp

Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)

\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)

Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc

\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ

Vậy

Câu số 1b đề thi hsg

Chào anh từ  huyện Cao Lãnh 

15 tháng 12 2016

ếu

17 tháng 12 2016

cc