Cho x,y e Z t/m \(y^2+2xy-3x-2=0\). Tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân VTV
\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)
\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)
a: (x-1)(2y-4)=0
=>x-1=0 và 2y-4=0
=>x=1 và y=2
b: (3x-2)(y-3)=6
mà x,y là số nguyên
nên \(\left(3x-2;y-3\right)\in\left\{\left(1;6\right);\left(-2;-3\right)\right\}\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;9\right);\left(0;0\right)\right\}\)
d: \(\left(3x-4\right)\left(2y-1\right)=2\)
\(\Leftrightarrow\left(3x-4;2y-1\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(\Leftrightarrow\left(x,y\right)=\left(2;1\right)\)
y2-2xy-3x-2=0 <=> (y-x)2-(x+1)(x+2)=0
=> y=x
th1: x=1
th2 x=2
theo tớ là vậy.
y^2+2xy-3x-2=0 <=> y^2 + 2xy + x^2 - (x^2+3x+2) = 0 <=> (y+x)^2 - (x^2 + x + 2x + 2) =0
<=> (y+x)^2 - (x+1)(x+2) = 0
=> (x+1)(x+2) = 0 (1) hoặc (y+x)^2 =0 (2)
Giải PT (1) ta được x=-1; x=-2
Thay kết quả của PT (1) vào PT (2) ta được y =1 hoặc y =2
Vậy các giá trị x và y cần tìm là : (-1;-2) và (1;2)
Cho mình 1 k nha!
lý luận thêm tí n nhá bạn