\(\hept{\begin{cases}\frac{xy}{2}+\frac{5}{2x+y-xy}=5\\2x+y+\frac{10}{xy}=4+xy\end{cases}}\)
Giải hệ phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+2x^2y+y^2+xy=\frac{-5}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y+xy\left(x^2+y\right)+xy=\frac{-5}{4}\left(1\right)\\\left(x^2+y\right)^2+xy=\frac{-5}{4}\left(2\right)\end{cases}}}\)
Đặt x2 + y = a ; xy = b
Khi đó hệ phương trình trở thành : \(\hept{\begin{cases}a+ab+b=\frac{-5}{4}\\a^2+b=\frac{-5}{4}\end{cases}}\)\(\Leftrightarrow a+ab-a^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\b-a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+y=0\\xy-\left(x^2+y\right)+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-x^2\\x^2+y=xy+1\end{cases}}}\)
với y = -x2 thay vào ( 2 ), ta có : x . ( -x2 ) = \(\frac{-5}{4}\)\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\Rightarrow y=-\sqrt[3]{\frac{25}{16}}\)
với x2 + y = xy + 1 \(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)=0\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=y-1\end{cases}}\)từ đó suy ra \(y=\frac{-3}{2}\)
Vậy ....
ĐK: \(x\ne0;y\ne0\)
Ta có hệ phương trình \(\hept{\begin{cases}x^2+xy-y^2=5\left(1\right)\\\frac{y}{x}-\frac{2x}{y}=\frac{-5}{2}-\frac{2}{xy}\left(2\right)\end{cases}}\)
Từ pt (2) ta có \(\frac{2y^2}{2xy}-\frac{4x^2}{2xy}=\frac{-5xy-4}{2xy}\Rightarrow2y^2-4x^2=-5xy-4\)
\(\Rightarrow4x^2-5xy-2y^2=4\)
Ta có hệ mới \(\hept{\begin{cases}x^2+xy-y^2=5\\4x^2-5xy-2y^2=4\end{cases}}\Leftrightarrow\hept{\begin{cases}4x^2+4xy-4y^2=20\\20x^2-25xy-10y^2=20\end{cases}}\)
\(\Rightarrow4x^2+4xy-4y^2=20x^2-25xy-10y^2\)
\(\Rightarrow-16x^2+29x+6y^2=0\Rightarrow\orbr{\begin{cases}x=2y\\x=-\frac{3y}{16}\end{cases}}\)
Với x = 2y, ta có \(\left(2y\right)^2+2y.y-y^2=5\Rightarrow5y^2=5\Rightarrow\orbr{\begin{cases}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{cases}}\)
Với \(x=-\frac{3}{16}y\), ta có \(\left(-\frac{3y}{16}\right)^2+\left(-\frac{3y}{16}\right).y-y^2=5\Rightarrow-\frac{296}{256}y^2=5\) (Vô nghiệm)
Vậy hệ phương trình có nghiệm (x;y) = (2;1) hoặc (x;y) = (-2;-1).
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
Hpt cho tương đương:
\(\hept{\begin{cases}xy-x-y+1=6\\\frac{1}{\left(x^2-2x+1\right)-1}+\frac{1}{\left(y^2-2y+1\right)-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=6\\\frac{1}{\left(x-1\right)^2-1}+\frac{1}{\left(y-1\right)^2-1}=\frac{2}{3}\end{cases}}}\)
Đặt \(x-1=a,y-1=b\)(dễ thấy a,b khác 0). Khi đó hệ trở thành:
\(\hept{\begin{cases}ab=6\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{6}{a}\\\frac{1}{a^2-1}+\frac{1}{\frac{36}{a^2}-1}=\frac{2}{3}\left(1\right)\end{cases}}}\)
Giải (1) \(\Leftrightarrow\frac{1}{a^2-1}+\frac{a^2}{36-a^2}=\frac{2}{3}\Leftrightarrow\frac{3\left(36-a^2\right)+3a^2\left(a^2-1\right)}{3\left(a^2-1\right)\left(36-a^2\right)}=\frac{2\left(a^2-1\right)\left(36-a^2\right)}{3\left(a^2-1\right)\left(36-a^2\right)}\)
\(\Rightarrow108-3a^2+3a^4-3a^2=74a^2-2a^4-72\)
\(\Leftrightarrow a^4-16a^2+36=0\Leftrightarrow\left(a^2-8\right)^2=28\Leftrightarrow\orbr{\begin{cases}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=\sqrt{8+2\sqrt{7}}\\a=\sqrt{8-2\sqrt{7}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=1+\sqrt{7}\\a=1-\sqrt{7}\end{cases}}\)
Suy ra: \(\hept{\begin{cases}a=1+\sqrt{7}\\b=\frac{6}{a}\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=\frac{6}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1+\sqrt{7}\\b=\sqrt{7}-1\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=-1-\sqrt{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2+\sqrt{7}\\y=\sqrt{7}\end{cases}}\) hoặc \(\hept{\begin{cases}x=2-\sqrt{7}\\y=-\sqrt{7}\end{cases}}\). Kết luận:...
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
Đặt \(2x+y-xy=a;xy=b\)
hpt \(\Leftrightarrow\hept{\begin{cases}\frac{b}{2}+\frac{5}{a}=5\\a+\frac{10}{b}=4\left(1\right)\end{cases}}\)\(\Rightarrow\hept{\begin{cases}ab+10=10a\\ab+10=4b\end{cases}}\)
\(\Leftrightarrow10a=4b\Leftrightarrow a=\frac{2b}{5}\)
\(\left(1\right)\Leftrightarrow\frac{2b}{5}+\frac{10}{b}=4\Leftrightarrow b^2+25=10b\Leftrightarrow\left(b-5\right)^2=0\Leftrightarrow b=5\)
\(\Rightarrow a=2\)
Từ đó ta có hệ:
\(\hept{\begin{cases}2x+y-xy=2\\xy=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x+y=7\\xy=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=7-2x\\x\left(7-2x\right)=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)\left(x-1\right)=0\\y=7-2x\end{cases}}\)
TH1: \(\hept{\begin{cases}x=1\\y=5\end{cases}}\)
TH2: \(\hept{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}\)
Vậy...