K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có BD là đgờng phân giác trong tam giác ABC

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{36}=\frac{AC}{60}\Rightarrow\frac{AB}{AC}=\frac{36}{60}=\frac{3}{5}\)

Ta có : \(AB^2=BC.BH\Rightarrow BH=\frac{AC^2}{BC}\)

           \(AC^2=CH.BC\Rightarrow HC=\frac{AC^2}{BC}\)

TA CÓ :\(\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{BC}.\frac{BC}{AC^2}=\frac{AB^2}{AC^2}=\frac{3^2}{5^2}=\frac{9}{25}\)

B) ta có tam giác AHB đồng dạng tam giác CHA ( bn c/m nka ~ dễ lắm )

\(\Rightarrow\frac{HA}{HC}=\frac{HB}{HA}\Rightarrow HA^2=HB.HC\)

Ta có : HB + HC = 96

\(\frac{HB}{HC}=\frac{9}{25}\)

giải tìm HB , HC nhen  thế vô pt là ok ^^

24 tháng 7 2023

bạn cho mình hỏi là sao không dùng 2 tam giác đồng dạng ở câu a ạ. mình cảm ơn nhiều

 

12 tháng 7 2023

\(a,\\ \text{ĐL đường p/g: }\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{36}{60}=\dfrac{3}{5}\\ \text{Hệ thức lượng: }\dfrac{HB}{HC}=\dfrac{\dfrac{AB^2}{BC}}{\dfrac{AC^2}{BC}}=\dfrac{AB^2}{AC^2}=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\\ b,BC=BD+CD=HB+HC=96\left(cm\right)\\ \to\dfrac{9}{25}HC+HC=96\\ \to HC=\dfrac{1200}{17}\to HB=\dfrac{432}{17}\\ \to AH=\sqrt{HC\cdot HB}=\dfrac{720}{17}\left(cm\right)\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

nên \(AB=\dfrac{3}{5}AC\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=36+60=96(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)

\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)

\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)

\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên 

\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)

hay \(AH=\dfrac{15}{34}\left(cm\right)\)

7 tháng 7 2021

tại sao tam giác ABC vuông tại A có AH là đg cao ứng với cạnh huyền BC thì suy ra cái kia

giải thích đc không

11 tháng 8 2018

a) Do AD là tia phân giác  \(\widehat{BAC}\)

\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{36}{60}=\frac{3}{5}\)

Áp dụng hệ thức lượng trong tam giác ta có : 

+)  \(AB^2=BC.BH\Leftrightarrow BH=\frac{AB^2}{BC}\)

+) \(AC^2=BC.HC\Leftrightarrow CH=\frac{AC^2}{BC}\)

Ta có :  \(\frac{HB}{HC}=\frac{AB^2}{BC}\div\frac{AC^2}{BC}=\frac{AB^2}{BC}.\frac{BC}{AC^2}=\frac{AB^2}{AC^2}=\frac{3^2}{5^2}=\frac{9}{25}\)

Vậy  \(\frac{HB}{HC}=\frac{9}{25}\)

b) Xét  \(\Delta AHB\)và  \(\Delta CHA\)có :

\(\widehat{BHA}=\widehat{CHA}\left(=90^o\right)\)

\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ với \(\widehat{ACB}\))

\(\Rightarrow\)\(\Delta AHB\)đồng dạng với  \(\Delta CHA\)( g-g )

\(\Rightarrow\frac{AH}{CH}=\frac{HB}{HA}\Leftrightarrow AH^2=HB.HC\left(1\right)\)

Lại có  \(\frac{HB}{HC}=\frac{9}{25}\Leftrightarrow\frac{HB}{9}=\frac{HC}{25}\)

Mà \(HB=HC=BC=96\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{HB}{9}=\frac{HC}{25}=\frac{HB+HC}{9+25}=\frac{96}{34}=\frac{48}{17}\)

\(\Rightarrow\hept{\begin{cases}HB=\frac{48}{17}\times9=\frac{432}{17}\\HC=\frac{48}{17}\times25=\frac{1200}{17}\end{cases}}\)

Thay vào (1) ta có :  \(AH^2=\frac{432}{17}\times\frac{1200}{17}=\frac{518400}{289}\)

\(\Rightarrow AH=\sqrt{\frac{518400}{289}}=\frac{720}{17}\)

Vậy ...

12 tháng 8 2018

HB/HC=9/25 

a: BD=36mm=3,6cm

CD=60mm=6cm

=>BC=9,6cm

AB/AC=BD/CD=3,6/6=3/5

=>BH/CH=(AB/AC)^2=9/25

b: BH/CH=9/25

=>BH/9=CH/25=(BH+CH)/(9+25)=9,6/34=24/85

=>BH=216/85; CH=120/17

AH=căn BH*CH=72/17(cm)