(1-1/2)x(1-1/3)x(1-1/4)...(1-1/999)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{999}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{998}{999}=\frac{1.2.3.4.....998}{2.3.4.5.....999}=\frac{1}{999}\)
\(A=x^6+x^5\left(x-1\right)-x^4\left(x+1\right)+x^3\left(x-1\right)+x^{20}\left(x+1\right)-x\left(x-1\right)+1\)
\(A=x^6-x^6+x^5-x^5-x^4+x^4-x^3+x^3+x^2-x^2+x+1\)
\(A=\left(x^6-x^6\right)+\left(x^5-x^5\right)+\left(x^4-x^4\right)+\left(x^3-x^3\right)+\left(x^2-x^2\right)+x+1\)
\(A=x+1\) x = 999
=> A = 999 + 1 = 1000
\(A=x^6-x^5\left(x-1\right)-x^4\left(x+1\right)+x^3\left(x-1\right)+x^2\left(x+1\right)-x\left(x-1\right)+1\)
\(A=x^6-\left(x^6-x^5\right)-\left(x^5+x^4\right)+\left(x^4-x^3\right)+\left(x^3+x^2\right)-\left(x^2-x\right)+1\)
\(A=x^6-x^6+x^5-x^5-x^4+x^4-x^3+x^3+x^2-x^2+x+1\)
\(A=x+1\)
Thay \(x=999\)vào A, ta có:
\(A=x+1=999+1=1000\)
Vậy tại \(x=999\)thì \(A=1000\)
1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ... + 1/999 x 1000 + 1
= 1/1 - 1/1000 + 1
= 999/1000 + 1
= 1999/1000
Chuc ban may man
Vậy xét là \(\frac{1}{2}+1\)nhé.
a,\(\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{1000}{999}\)
=3x4x5x...x1000/2x3x4x...x999
=1000/2=500
b, c tương tự câu a
)(1/2+1)x(1/3+1)x(1/4+1)x...x(1/999+1)
b)(1/2-1)x(1/3-1)x(1/4-1)x...x(1/1000-1)
c)3/22 x 8/32 x 15/42 x .... x 99/102
mình ko biết làm chép lại de thui
2,
Q=\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)x\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
= \(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)x\left(\frac{3+\left(-2\right)+\left(-1\right)}{6}\right)\)
=\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)x0\)
Vậy Q=0
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)
\(=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{999000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1999}{1000}\)
\(=\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{998}{999}=\frac{2\cdot3\cdot4...998}{3\cdot4\cdot5...999}=\frac{2}{999}\)
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{998}{999}\)
= \(\frac{1.2.3.4.....997.998}{2.3.4.5.....998.999}\)
= \(\frac{1.1.1.1.....1.1}{1.1.1.1.....1.999}\)
= \(\frac{1}{999}\)
HỌC TỐT