tìm nghiệm nguyên của phương trình:
\(x+y+z+xy+yz+xz=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(
loại )
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)
=>x,y,z vô nghiệm hoặc đề sai
điều kiện : x,y,z khác 0
Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)
Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)
\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)
Áp dụng BĐT Cô-si cho 3 số dương,ta có :
\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)
Dấu "=" xảy ra khi | x | = | y | = | z |
Do đó : \(3=3\sqrt[3]{xyz}\)
\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)
+) Trường hợp x,y,z > 0 ta được x = y = z = 1
+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị
vậy....
ban copy link nay :http://olm.vn/hoi-dap/question/305600.html roi vao google tra la có
Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)
Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)
\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)
\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)
\(\Leftrightarrow1\ge xyz>0\)
Vì x,y,z nguyên
=> xyz=1
Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)
Cre: @tpokemont