cho các số a,b thỏa mãn:a^2+b^2=a^3+b^3=1
tính giá trị biểu thức:a=a^4+b^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$
$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:
$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$
$=4(-k)(-k)(2k)=8k^3$
Giải
a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)
<=>10(2m-1)+ 12(2m+1) =0
<=> 44m +2 =0
<=> m=-1/22
b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)
<=> 20 = 5(2m -1) + 4(2m+1)
<=> 20 = 18m - 1
<=> m=7/6
Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)
Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)
=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)
\(=a\left(ab+ca\right)+b+c\) (Vì ab+bc+ca=1)
\(=\left(a^2+1\right)\left(b+c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))
\(T=1\)
Để tìm Max M thì ta cần c/m \(a^2+b^2\le ab+1\)
Giả sử điều cần c/m là đúng , khi đó , ta có :
\(a^2+b^2\le ab+1\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) ( do \(a^3+b^3=a^5+b^5\))
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+a^5b+b^5a+b^6\)
\(\Leftrightarrow2a^3b^3\le a^5b+b^5a\)
\(\Leftrightarrow a^5b+b^5a-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)\ge0\) ( điều này luôn đúng với a ; b dương )
=> Điều giả sử là đúng
\(\Rightarrow a^2+b^2\le ab+1\)
\(\Rightarrow M=a^2+b^2-ab\le1\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}ab=0\\a^2-b^2=0\end{cases}}\)
\(\Leftrightarrow a=0\) hoặc \(b=0\)hoặc \(a^2=b^2\)
\(\Leftrightarrow a^2=b^2\)( a , b dương )
\(\Leftrightarrow a=b\)
Thế a = b vào b/t \(a^3+b^3=a^5+b^5\), ta có :
\(2a^3=2a^5\)
\(\Leftrightarrow a^3=a^5\)\(\Leftrightarrow\frac{a^3}{a^5}=1\Leftrightarrow\frac{1}{a^2}=1\Leftrightarrow a=1\left(a>0\right)\)
\(\Leftrightarrow b=1\)
Vậy ...