K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Mình không biết vẽ hình trên đây nên bạn thông cảm nhé

a,Vì AM là đường trung tuyến của tam giác ABC

=>BM=CM

Xét tam giác CBD có:

    BM=CM

   CN=DN(N là trung điểm của DC)

=>MN là đường trung bình của tam giác CBD

=> MN//BD

=>MN//ID

Xét tam giác AMN có:

  AI=MI(I là trung điểm của AM)

  ID//MN

=>AD=ND hay D là trung điểm của AN(định lý về đường trung bình trong tam giác)

b, Xét tam giác CBD có:

         BM=CM

         CN=DN(N là trung điểm của DC)

=>MN là đường trung bình của tam giác CBD

=>BD=2MN

c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có:

                   AC2=BC2-AB2

               =>AC2=132-52

               =>AC2=144

               =>AC=12(cm)

Ta có: AD=\(\frac{1}{3}\)AC( vì AD=DN=NC)

=>AD=4(cm)

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại A, ta có:

         BD2=AB2+AD2

         BD2=52+42

         BD2=41

         BD=6,4(cm)(xấp xỉ thôi nha)

d, Vì BD=2MN(câu b)

       =>MN=\(\frac{BD}{2}=\frac{6,4}{2}=3,2\)(cm)

     Xét tam giác AMN có:

            AI=MI(I là trung điểm của AM)

            AD=ND(D là trung điểm của AN)

=>ID là đường trung bình của tam giác AMN

=>MN=2ID

=>ID=\(\frac{MN}{2}=\frac{3,2}{2}=1,6\)(cm)

mà BD=BI+ID

=>BI=BD-ID

=>BI=6,4-1,6

=>BI=4,8(cm)

27 tháng 11 2023

a: Xét ΔCDB có

M,N lần lượt là trung điểm của CB,CD

=>MN là đường trung bình của ΔCDB

=>MN//BD và \(MN=\dfrac{BD}{2}\)

\(NM=\dfrac{BD}{2}\)

nên BD=2MN

b: NM//BD

=>ID//NM

Xét ΔANM có

I là trung điểm của AM

ID//NM

Do đó: D là trung điểm của AN

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+5^2=13^2\)

=>\(AC^2=169-25=144\)

=>AC=12(cm)

D là trung điểm của AN

nên \(AD=DN=\dfrac{AN}{2}\)

N là trung điểm của DC

nên \(DN=CN=\dfrac{DC}{2}\)

=>\(AD=DN=CN=\dfrac{AC}{3}=4\left(cm\right)\)

ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=4^2+5^2=41\)

=>\(BD=\sqrt{41}\left(cm\right)\)

13 tháng 10 2021

a: Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DC

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)

b: Xét ΔAME có 

I là trung điểm của AM

ID//ME

Do đó: D là trung điểm của AE

27 tháng 6 2017

A B C M D I 5cm 13cm

20 tháng 4 2019

a, Xét tam giác ABM và tam giác ACM có

AB=AC(gt)

BM=CM(gt)

^ABC=^ACB(gt)

=> tam giác ABM= tam giác ACM(c-g-c)

=> ^AMB=^AMC(2 g tương ứng)

=> ^AMB=^AMC=180 độ /2 =90 độ

hay AM vuông góc vs BC

20 tháng 4 2019

b, Ta có: BM=MC=1/2 BC=5

Áp dụng đly pitago vào tam giác vuông ABM có:

AM^2=AB^2-BM^2=13^2-5^2=144

=> AM=12

29 tháng 4 2020

E C M K I H A B O

a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C

c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK

\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\)  là tiếp tuyến của (O) 

d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều 

\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều 

\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi

e . Ta có : 

\(\Delta ACO\) đều 

\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)

\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)

\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng