Cho hình thang ABCD ( AB//CD). Lấy điểm M, P thuộc cạnh AD sao cho AM=MP=PD, từ M kẻ MN song song AB ( N thuộc cạnh BC), từ P kẻ PQ song sog DC ( Q thuộc BC)
a) Chứng minh BN=NQ=QC
b) Chứng minh AB+PQ=2MN
c) Chứng minh MN+DC=2PQ
d) AB+DC=MN+PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: AE+EM=MP+PD
nên AM=MD
hay M là trung điểm của AD
Ta có: BF+FN=NQ+QC
nên BN=CN
hay N là trung điểm của BC
Theo giả thiết ta có:
AE = EM = MP = PD => AE + EM = MP+PD
C/ m tương tự ta có: BF +FN = NQ + QC
=> MN là đg TB hình thang ABCD
\(\Rightarrow MN=\frac{AB+CD}{2}=\frac{8+12}{2}=10\left(cm\right)\)
C/m tương tự ta có:
\(EF=\frac{AB+MN}{2}=\frac{8+10}{2}=9\left(cm\right)\)
\(PQ=\frac{MN+CD}{2}=\frac{10+12}{2}=11\left(cm\right)\)
Vậy...
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Vì MN//AB=>MN//AB//CD(vì AB//CD)
PQ//DC=>PQ//DC//AB(vì AB//CD)
=>MN//PQ
Xét hình thang ABQP có: AM=PM(M là trung điểm của AB)
MN//PQ//AB
=>BN=NQ hay N là trung điểm của BQ(1)
Xét hình thang MNCD có: MP=DP(P là trung điểm của MD)
MN//PQ//CD
=>NQ=QC hay Q là trung điểm của NC(2)
Từ (1) và (2)=>BN=NQ=QC
b,Xét hình thang ABQP có: AM=PM(M là trung điểm của AP)
BN=QN(N là trung điểm của BQ)
=>MN là đường trung bình của hình thang ABQP
=>MN=\(\frac{AB+PQ}{2}\)
=>AB+PQ=2MN
c, Xét hình thang MNCD có: MP=DP(P là trung điểm của MD)
NQ=CQ(Q là trung điểm của NC)
=>PQ là đường trung bình của hình thang MNCD
=>PQ=\(\frac{MN+CD}{2}\)
=>MN+CD=2PQ
d, Vì AB+PQ=2MN =>AB=2MN-PQ(3)
MN+DC=2PQ =>DC=-MN+2PQ(4)
Cộng từng vế tương ứng của (3) và (4) ta được:
AB+CD=2MN-PQ+(-MN)+2PQ
AB+CD=MN+PQ