rút gọn A= ^/1+1/a^2+1/(a+1)^2 với a>0
dấu căn là căn hết nha mn, căn bự che hết á. Help me!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có thể làm như sau: Bước 1: Rút gọn phần tử trong ngoặc đầu tiên: √a - 1 - 1 / √a = (√a * √a - √a - 1) / √a = (a - √a - 1) / √a Bước 2: Rút gọn phần tử trong ngoặc thứ hai: √a - 2 - √(a + 2) / √(a - 1) = (√a * √(a - 1) - 2 * √(a - 1) - √(a + 2)) / √(a - 1) = (a - √a - 2√(a - 1) - √(a + 2)) / √(a - 1) Bước 3: Thay các giá trị rút gọn vào biểu thức ban đầu: a = 1 / ((a - √a - 1) / √a) / (√a + 1 / ((a - √a - 2√(a - 1) - √(a + 2)) / √(a - 1))) Bước 4: Rút gọn biểu thức: a = √a * √(a - 1) / (a - √a - 1) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) Bước 5: Rút gọn thêm: a = √a * √(a - 1) / (a - √a - 1) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) * (√(a - 1) / (a - √a - 2√(a - 1) - √(a + 2))) Bước 6: Rút gọn thêm: a = (√a * √(a - 1))^2 / (a - √a - 1) * (√(a - 1))^2 / (a - √a - 2√(a - 1) - √(a + 2)) Bước 7: Rút gọn cuối cùng: a = (a(a - 1)) / ((a - √a - 1)(a - √a - 2√(a - 1) - √(a + 2)))
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
a, \(B=\frac{\sqrt{a}+3}{2\sqrt{a}-6}-\frac{3-\sqrt{a}}{2\sqrt{a}+6}=\frac{\left(2\sqrt{a}+6\right)\left(\sqrt{a}+3\right)+\left(2\sqrt{a}-6\right)\left(\sqrt{a}-3\right)}{4a-36}\)
\(=\frac{2a+12\sqrt{a}+18+2a-12\sqrt{a}+18}{4a-36}=\frac{4a+36}{4a-36}=\frac{a+9}{a-9}\)
b, Ta có : \(B>1\Rightarrow\frac{a+9}{a-9}>1\Leftrightarrow\frac{a+9}{a-9}-1>0\)
\(\Leftrightarrow\frac{a+9-a+9}{a-9}>0\Leftrightarrow\frac{18}{a-9}>0\Rightarrow a-9>0\Leftrightarrow a>9\)vì 18 > 0
\(B< 1\Rightarrow\frac{a+9}{a-9}< 1\Leftrightarrow\frac{a+9}{a-9}-1< 0\)
\(\Leftrightarrow\frac{a+9-a+9}{a-9}< 0\Leftrightarrow\frac{18}{a-9}< 0\Rightarrow a-9< 0\Leftrightarrow a< 9\)vì 18 > 0
c, Ta có : \(B=4\Rightarrow\frac{a+9}{a-9}=4\Rightarrow a+9=4a-36\Leftrightarrow3a=45\Leftrightarrow a=15\)
Vậy a = 15 thì B = 4
Bài 1:
a. \(\sqrt{\frac{25m^2}{49}}=\frac{\sqrt{25m^2}}{\sqrt{49}}=\frac{5m}{7}\)
b. \(\frac{\sqrt{192k}}{\sqrt{3k}}=\sqrt{\frac{192k}{3k}}=\sqrt{64}=8\)
Bài 2:
a. \(\frac{a+\sqrt{a}}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^2+\sqrt{a}}{\sqrt{a}}=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}}=\sqrt{a}+1\)
b. \(\frac{\sqrt{a}-a}{\sqrt{a}-1}=\frac{\sqrt{a}-\left(\sqrt{a}\right)^2}{\sqrt{a}-1}=\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{\sqrt{a}-1}=\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}=-\sqrt{a}\)
c. \(\frac{a-b}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}=\sqrt{a}+\sqrt{b}\)