K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

2) \(43^{2020}+43^{2021}=43^{2020}\left(1+43\right)=43^{2020}.44\)

\(44⋮11\Rightarrow43^{2020}.44⋮11\Rightarrow43^{2020}+43^{2021}⋮11\)

Phần 1 đang nghĩ -.-

12 tháng 8 2020

Cảm ơn bạn

21 tháng 5 2020

Ta có: 

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)

5 tháng 3 2016

(x+y+z)= x2 + y2 + z+ 2(xy +yz +zx)

9 tháng 2 2016

http://olm.vn/hoi-dap/question/423016.html

9 tháng 2 2016

 

Dự đoán đẳng thức xảy ra khi x = y = z = 1.

Đặt x = 1 + a ; y = 1 + b , ( a , b $\in$ R ). Từ giả thiết suy ra z = 1 - a - b.

Ta có: 
$x^2+y^2+z^2+xy+yz+zx$x2+y2+z2+xy+yz+zx$=\left(1+a\right)^2+\left(1+b\right)^2+\left(1-a-b\right)^2+\left(1+a\right)\left(1+b\right)+\left(1+b\right)\left(1-a-b\right)+\left(1-a-b\right)\left(1+a\right)=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+6\ge6.$=(1+a)2+(1+b)2+(1ab)2+(1+a)(1+b)+(1+b)(1ab)+(1ab)(1+a)=(a+b2 )2+3b24 +66.

Đẳng thức xảy ra khi và chỉ khi.

$b=0;a+\frac{b}{2}=0\Leftrightarrow a=0;b=0\Leftrightarrow x=y=z=1.$b=0;a+b2 =0a=0;b=0x=y=z=1.

 

6 tháng 11 2018

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

22 tháng 12 2018

Sửa đề \(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)

Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)(hằng đẳng thức cho  3 số )

\(\Rightarrow\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\left(đpcm\right)\)

Vậy

30 tháng 11 2017

Ta có:

VT= \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\) = VP

=> đpcm

30 tháng 11 2017

\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)

Biến đổi vế trái:

VT\(\)\(\)\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)\

\(=2xy+2yz+2zx\)

\(=2\left(xy+yz+zx\right)=\) VP