Phân tích thành nhân tử: \(\left(a+b+c\right)^3\) \(-\) \(4\left(a^3+b^3+c^3\right)\) \(-12abc\)bằng cách đổi biến : \(a+b=m\)và \(a-b=n\)
Mình đangg cần gấp éeeeeee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến
Đặt \(a+b=m;a-b=n\)
Ta có:\(\Rightarrow\hept{\begin{cases}\left(a+b\right)^2=m^2\\\left(a-b\right)^2=n^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2+2ab+b^2=m^2\\a^2-2ab+b^2=n^2\end{cases}}\Rightarrow\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=m^2-n^2\)
\(\Rightarrow4ab=m^2-n^2\)
Mặt khác :\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=m\left(n^2+\frac{m^2+n^2}{4}\right)\)
Ta lại có:\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-12abc\)
\(=m^3+3m^2c+3c^2m+c^3-4\left(mn^2+\frac{m^2-n^2}{4}+c^3\right)-12abc\)
\(=m^3+3m^2c+3c^2m+c^3-4\left(\frac{4mn^2+m^3-mn^2}{4}+c^3\right)-3c\left(m^2-n^2\right)\)
\(=m^3+3m^2c+3c^2m+c^3-4\cdot\frac{m^3+3mn^2}{4}-4c^3-3cm^2+3cn^2\)
\(=m^3+3cm^2+3c^2m+c^3-m^3-3mn^2-4c^3-3cm^2+3cn^2\)
\(=\left(m^3-m^3\right)+\left(3cm^2-3cm^2\right)+3c^2m+\left(c^3-4c^3\right)+3cn^2-3mn^2\)
\(=3c^2m-3c^3+3cn^2-3mn^2\)
\(=3\left(c^2m-c^3+cn^2-mn^2\right)\)
\(=3\left[c^2\left(m-c\right)+n^2\left(c-m\right)\right]\)
\(=3\left(c^2-n^2\right)\left(m-c\right)\)
\(=3\left(c-n\right)\left(c+n\right)\left(m-c\right)\)
\(=3\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\)
P/S:Bài giải dài.có j sai thông cảm cho e nha!
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)
\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)
\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)
\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)
a(b3-c3) -b(b3-c3+a3-b3)+c(a3-b3)
=a(b3-c3)-b(b3-c3)-b(a3-b3)+c(a3-b3)
=(b3-c3)(a-b)-(a3-b3)(b-c)
=(b-c)(b2+cb+c2)(a-b)-(a-b)(a2+ab+b2)(b-c)
=(b-c)(a-b)(b2+Cb+c2-a2-ab-b2)
=(b-c)(a-b)(c2+cb-ab-a2)
=(b-c)(a-b)[(c-a)(c+a)+b(c-a)]
=(b-c)(a-b)(c-a)(a+c+b)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-4\left(a^3+b^3+c^3\right)-12abc\)
\(=-3\left(a^3+b^3+c^3\right)+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-12abc\)
\(=-3\left(\left(a^3+b^3+c^3\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc\right)\)
XONG NHAAAAA :3333333