K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 8 2020

\(y'=\frac{m^2+m+2}{\left(1-x\right)^2}=\frac{\left(m+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(1-x\right)^2}>0\)

Hàm đồng biến trên \(\left[-4;-2\right]\)

\(\Rightarrow\max\limits_{\left[-4;-2\right]}y=y\left(-2\right)=-\frac{m^2+2m+2}{3}\)

\(\Rightarrow-\frac{m^2+2m+2}{3}=-\frac{1}{3}\Rightarrow m^2+2m+2=1\)

\(\Rightarrow m=-1\)

NV
12 tháng 8 2020

Hàm bậc nhất trên bậc nhất luôn đơn điệu trên mỗi khoảng xác định

\(\Rightarrow\) GTLN của hàm trên \(\left[2;5\right]\) rơi vào 1 trong 2 đầu mút

Hay \(\max\limits_{\left[2;5\right]}y=max\left\{y\left(2\right);y\left(5\right)\right\}\)

\(y\left(2\right)=\frac{m+3}{-1}=-m-3\)

\(y\left(5\right)=\frac{m+6}{-4}\)

TH1: nếu \(y_{max}=y\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}-m-3>\frac{m+6}{-4}\\-m-3=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\m=-7\end{matrix}\right.\)

\(\Rightarrow m=-7\)

TH2: nếu \(y_{max}=y\left(5\right)\Leftrightarrow\left\{{}\begin{matrix}\frac{m+6}{-4}>-m-3\\\frac{m+6}{-4}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m=-22\left(l\right)\end{matrix}\right.\)

Vậy \(m=-7\)

15 tháng 3 2021

Xét hàm \(f\left(x\right)=\dfrac{x+m}{x+1}\) có \(f'\left(x\right)=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+m\right)\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x-1\right)^2}\)

Cho \(f'\left(x\right)=\dfrac{1-m}{\left(x-1\right)^2}=0\Leftrightarrow m=1\)

Khi đó \(f\left(x\right)=\dfrac{x+1}{x+1}=1\)

\(\Rightarrow max_{\left[0;1\right]}\left|f\left(x\right)\right|+min_{\left[0;1\right]}\left|f\left(x\right)\right|=1+1=2\) ( thỏa mãn )

Vậy \(m=1\) thỏa mãn bài toán.

Xét \(m\ne1\), ta thấy \(f\left(x\right)\) đơn điệu trên \(\left[0;1\right]\), xét các trường hợp:

*) \(f\left(0\right).f\left(1\right)\le0\Leftrightarrow\dfrac{m+1}{2}\cdot m\le0\) \(\Leftrightarrow-1\le m\le0\)

\(\Rightarrow\left\{{}\begin{matrix}min_{\left[0;1\right]}\left|f\left(x\right)\right|=0\\max_{\left[0;1\right]}\left|f\left(x\right)\right|=max\left\{\dfrac{\left|m+1\right|}{2};\left|m\right|\right\}\end{matrix}\right.\)

Khi đó: \(max_{\left[0;1\right]}\left|f\left(x\right)\right|+min_{\left[0;1\right]}\left|f\left(x\right)\right|=2\)

\(\Leftrightarrow0+\dfrac{\left|\dfrac{m+1}{2}+m\right|+\left|\dfrac{m+1}{2}-m\right|}{2}=2\)

\(\Leftrightarrow\left|\dfrac{3m+1}{2}\right|+\left|\dfrac{-m+1}{2}\right|=4\)

\(\Leftrightarrow\left|3m+1\right|+\left|m-1\right|=8\) (1)

Xét các trường hợp:

+) \(m\le\dfrac{-1}{3}\) : \(\left(1\right)\Leftrightarrow-3m-1-m+1=8\Leftrightarrow m=-2\) ( loại )

+) \(m\ge1\) : \(\left(1\right)\Leftrightarrow3m+1+m-1=8\Leftrightarrow m=2\) ( loại )

+) \(-\dfrac{1}{3}< m< 1\) : \(\left(1\right)\Leftrightarrow3m+1-m+1=8\Leftrightarrow m=3\) ( loại )

*) \(f\left(0\right)\cdot f\left(1\right)>0\Leftrightarrow\dfrac{m+1}{2}\cdot m>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}min_{\left[0;1\right]}\left|f\left(x\right)\right|=min\left\{\dfrac{\left|m+1\right|}{2};\left|m\right|\right\}\\max_{\left[0;1\right]}\left|f\left(x\right)\right|=max\left\{\dfrac{\left|m+1\right|}{2};\left|m\right|\right\}\end{matrix}\right.\)

Khi đó: \(min_{\left[0;1\right]}\left|f\left(x\right)\right|+max_{\left[0;1\right]}\left|f\left(x\right)\right|=2\)

\(\Leftrightarrow\dfrac{\left|\left|\dfrac{m+1}{2}+m\right|-\left|\dfrac{m+1}{2}-m\right|\right|}{2}+\dfrac{\left|\left|\dfrac{m+1}{2}+m\right|\right|+\left|\left|\dfrac{m+1}{2}-m\right|\right|}{2}=2\)

\(\Leftrightarrow\dfrac{\left|\left|3m+1\right|-\left|m-1\right|\right|}{4}+\dfrac{\left|\left|3m+1\right|+\left|m-1\right|\right|}{4}=2\)

\(\Leftrightarrow\dfrac{2\left|3m+1\right|}{4}=2\)

\(\Leftrightarrow\left|3m+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-5}{3}\end{matrix}\right.\)

Tóm lại ở cả 2 trường hợp thì ta có \(m\in\left\{1;\dfrac{-5}{3}\right\}\) thỏa mãn đề bài.

Vậy \(S=\left\{1;\dfrac{-5}{3}\right\}\) có \(2\) phần tử.

 

 

 

25 tháng 8 2019

27 tháng 4 2023

- Phương trình hoành độ giao điểm của (P) và (d'):

\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)

\(a=1;b=m;c=-4\)

\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)

Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

Vậy m=4 hay m=-3.

19 tháng 4 2016

Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)

Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\)  và thỏa mãn :

\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)

                    \(\Leftrightarrow m=2\) hoặc \(m=-3\)

Kết luận  \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4

 

 

16 tháng 2 2018

Đáp án C

     Ta có:  y ' = − 1 − m x − 1 2  

     · Trường hợp 1: nếu  y ' > 0 ⇒ m < − 1 ,  lúc này hàm số đồng biến

      ⇒ min 2 ; 4 y = y 2 = 2 + m 2 − 1 = 3 ⇒ m = 1 (mâu thuẫn với m < -1) => loại

     · Trường hợp 2: nếu  y ' < 0 ⇒ m > − 1 ,  lúc này hàm số nghịch biến

       ⇒ min 2 ; 4 y = y 4 = 4 + m 4 − 1 = 3 ⇒ m = 5 (thỏa mãn với m > -1) => chọn

Đối chiếu 4 đáp án thì có đáp án C là thỏa mãn.

2 tháng 2 2018

Đáp án C

Phương pháp: Hàm số bậc nhất trên bậc nhất  y = a x + b c x + d a d - b c ≠ 0  luôn đơn điệu trên từng khoảng xác định của nó.

TH1: Hàm số đồng biến trên [2;4] =>   m a x 2 ; 4 y = y ( 4 )

TH2: Hàm số nghịch biến trên [2;4] =>   m a x 2 ; 4 y = y ( 2 )

Cách giải: Tập xác định: D = R\{1}

Ta có: 

TH1: 

=>Hàm số đồng biến trên 

TH2: 

=> Hàm số nghịch biến trên 

Vậy m = –2

Dựa vào các đáp án ta thấy chỉ có đáp án C thỏa mãn

29 tháng 8 2019

10 tháng 12 2019

Chọn đáp án D