Cho tam giác ABC vuông tại A, có AC = 14cm; BC = 16cm.Độ dài hình chiếu của cạnh AC trên cạnh huyền là cm. (Nhập kết quả dưới dạng số thập phân gọn nhất).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
chọn D
Áp dụng định lí Pytago ta có
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=\sqrt{36+64}=10\\ \Rightarrow D\)
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH^2+16HB-225=0\)
hay BH=9(cm)
\(\Leftrightarrow AC=20cm\)
hay AH=12cm
Ta có: \(\frac{AB}{3}=\frac{AC}{4}\)
=> \(\frac{AB}{AC}=\frac{3}{4}\)
Độ dài cạnh AB là:
14 : (3 + 4) x 3 = 6 (cm)
Độ dài cạnh AC là:
14 - 6 = 8 (cm)
Áp dụng định lý Py-ta-go, ta có:
\(AB^2+AC^2=BC^2=6^2+8^2=100=BC^2=>BC=10\)
Đ/S: 10
Chúc bạn học tốt !!!
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{14}{7}=2\)
=> \(\hept{\begin{cases}\frac{AB}{3}=2\\\frac{AC}{4}=2\end{cases}}\)=> \(\hept{\begin{cases}AB=2.3=6\\AC=2.4=8\end{cases}}\)
Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A
=> BC2 = AB2 + AC2 = 62 + 82 = 36 + 64 = 100
=> BC = 10
Vậy ....