Tìm giá trị nhỏ nhât của A=x^2 +y^2 / y, biết x-y=1, y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có |x+19|+|y-5|+1980 >1980
<=>|x+19|+|y-5|>0
dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0
<=>x=-19,y=5
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
1.Tìm x,y để (x+1)(y^2-6)=0
2.Tìm x biết x^2-12x+7=7
3.Tìm giá trị nhỏ nhất của A=(x+2)^2+(Y-1/5)^2-10
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)
\(\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{4.\dfrac{\left(x+y\right)^2}{4}}\)
\(\ge\dfrac{4}{1^2}+2+\dfrac{5}{1^2}\) (do \(x+y\le1\))
\(=11\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy GTNN của A là 11.
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}=2+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
Áp dụng cô-si cho từng cặp là ok,,,,
Riêng cặp cuối \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Leftrightarrow-\left(x+y\right)\ge-\sqrt{2}\)
\(A=\dfrac{1}{x}+\dfrac{1}{4y}=\dfrac{4}{4x}+\dfrac{1}{4y}=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\)
Áp dụng BĐT Cauchy schwart, ta có:
\(A=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\ge\dfrac{\left(2+1\right)^2}{4\left(x+y\right)}=\dfrac{9}{4.2}=\dfrac{9}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{4x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=4y\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy, GTNN của \(A=\dfrac{9}{8}\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3},\dfrac{2}{3}\right)\)
Áp dụng BĐT Cosi cho 2 cặp số dương là \(\dfrac{1}{x};\dfrac{9}{16}x\) và \(\dfrac{1}{4y};\dfrac{9}{16}y\) , ta có:
\(\dfrac{1}{x}+\dfrac{9}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{9}{16}x}=2.\dfrac{3}{4}=\dfrac{3}{2}\)
\(\dfrac{1}{4y}+\dfrac{9}{16}y\ge2\sqrt{\dfrac{1}{4y}.\dfrac{9}{16}y}=2.\dfrac{3}{8}=\dfrac{3}{4}\)
Cộng vế theo vế ta được: \(\dfrac{1}{x}+\dfrac{1}{4y}+\dfrac{9}{16}\left(x+y\right)\ge\dfrac{3}{2}+\dfrac{3}{4}=\dfrac{9}{4}\)
\(\Leftrightarrow A+\dfrac{9}{16}.2\ge\dfrac{9}{4}\Leftrightarrow A\ge\dfrac{9}{4}-\dfrac{9}{8}=\dfrac{9}{8}\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3};\dfrac{2}{3}\right)\)