Tìm x:
x^3 + 6x^2 + 12x + 8 = x^2 + 4x + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=\left(x+1\right)\left(x^2-7x+19\right)=0\)
Ta thấy: \(x^2-7x+19=x^2-2\times\frac{7}{2}x+\frac{7}{2}^2+\frac{27}{4}=\left(x-\frac{7}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)lớn hơn 0
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(x^3-6x^2+12x+19=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-7x+19\right)=0\)
Mà \(x^2-7x+19>0\)với \(\forall x\)
\(\Rightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(x=-1\)
c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
a: \(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
hay \(x\in\left\{0;\sqrt{3};-\sqrt{3}\right\}\)
b: \(=\dfrac{x^3-3x^2+6x-8}{x-2}=\dfrac{x^2-2x-x^2+2x+4x-8}{x-2}=x^2-x+4\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
a) \(x^2-12x+11=0\)
\(\Leftrightarrow x^2-2.6.x+36-25=0\)
\(\Leftrightarrow\left(x-6\right)^2-25=0\)
\(\Leftrightarrow\left(x-6\right)^2=25=5^2=\left(-5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=5\\x-6=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=1\end{matrix}\right.\)
Vậy : \(x\in\left\{11,1\right\}\)
c) \(4x^2-12x-7=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.3+9-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2=16=4^2=\left(-4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{7}{2},-\frac{1}{2}\right\}\)
Câu b) và d) xíu em làm sau, em hơi bận chút !!
Làm tiếp nha >>>
b) \(4x^2-4x-3=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.1+1-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2=4=2^2=\left(-2\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{3}{2},-\frac{1}{2}\right\}\)
d) \(x^3-6x^2=8-12x\)
\(\Leftrightarrow x^3-6x^2-\left(8-12x\right)=0\)
\(\Leftrightarrow x^3-6x^2-8+12x=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy : \(x=2\)
P/s : Hằng đẳng thức với lập phương khó thật, rối câu d) mãi mới nghĩ ra >>
\(\)
\(\Leftrightarrow\left(x+2\right)^2\cdot\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow x^3+5x^2+8x+4=0\\ \Leftrightarrow\left(x+1\right)\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)