cho tam giác ABC.D,F là trung điểm của BC và AC.F đối xứng với D qua E
a) Chứng minh ADCF là hình bình hành
b) chứng minh AB=DF
c) Tam giác ABC thỏa mản điều kiện gì dể ADCF là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, △ABC có: là trung điểm của BC, là trung điểm của
⇒DE là đường trung bình của
b, Có: F là điểm đối xứng với D qua E
(theo (2),(3)⇒ABDF là hình bình hành ◻
c, ABDF là hình bình hành
Mặt khác là trung điểm của nên
(4),(5)⇒ADCF là hình bình hành
Ta lại có: AB//DF⇒AC⊥DF
Vậy hình bình hành có hai đường chéo vuông góc hay là là hình thoi
Có là hình thoi
có (AC⊥DF)
(Định lý Pythagore)
thay AE=4 và DE=3 tính được
d, Để là hình vuông thì
Mà có nên khi và chỉ khi là đường trung trực của
Tức là hay vuông cân tại A
Điều kiện để là hình vuông là vuông cân tại A
sai thì thôi nha
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
mà \(\widehat{ADC}=90^0\)
nên ADCF là hình chữ nhật
a, Trong △ABC có:
D là trung điểm của BC, E là trung điểm của AC.
⇒ DE là đường trung bình của △ABC.
⇒ DE = 1/2AB (1)
và: DE // AB (2)
Từ (1) suy ra: DE = 1/2 . 6 = 3.
b, Ta có: F là điểm đối xứng với D qua E nên:
DE = DF
⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)
Từ (2),(3) suy ra: ABDF là hình bình hành.
c, Do ABDF là hình bình hành nên:
AF // BD (4) và: AF = BD
Mặt khác, ta có: D là trung điểm của BC
=> BD = BC. Mà: AF = BD (cmt)
=> BC = AF (5).
Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.
Ta lại có: AB⊥AC (góc A = 90o)
và: AB // DF
⇒ AC⊥DF.
Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:
ADCF là hình thoi.
Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.
Xét △ADE có: góc E = 90∘ (AC⊥DF)
⇒ AE2 + DE2 = AD2 (Định lý Pythagore)
thay số: 42 + 32 = AD2
16 + 9 = AD2
25 = AD2 => AD = 5 cm.
d, Để ADCF là hình vuông thì: AD⊥BC.
Mà: DC = DB = 1/2BC (gt) nên:
AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:
AB = AC
=> △ABC vuông cân tại A.
Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A
a) Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(gt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)
nên MF//AE và MF=AE
Xét tứ giác AEMF có
MF//AE(cmt)
MF=AE(cmt)
Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)
c) Xét tứ giác AMCK có
F là trung điểm của đường chéo AC
F là trung điểm của đường chéo MK
Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)