K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

a, △ABC có:  là trung điểm của BC là trung điểm của 

⇒DE là đường trung bình của 

b, Có: F là điểm đối xứng với D qua E

 (theo (2),(3)⇒ABDF là hình bình hành 

c, ABDF là hình bình hành 

Mặt khác  là trung điểm của  nên  

(4),(5)⇒ADCF là hình bình hành

Ta lại có: AB//DF⇒AC⊥DF

Vậy hình bình hành có hai đường chéo vuông góc hay là là hình thoi 

Có  là hình thoi 

 có  (AC⊥DF)

(Định lý Pythagore)

thay AE=4 và DE=3 tính được 

d, Để  là hình vuông thì 

Mà có  nên  khi và chỉ khi  là đường trung trực của 

Tức là  hay  vuông cân tại A

Điều kiện để  là hình vuông là  vuông cân tại A

sai thì thôi nha

17 tháng 10 2016

thank nhiều

16 tháng 11 2021

a: Xét tứ giác ADCF có 

E là trung điểm của AC

E là trung điểm của DF

Do đó: ADCF là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên ADCF là hình chữ nhật

29 tháng 11 2021

a, Trong △ABC có:

là trung điểm của BCE là trung điểm của AC.

⇒ DE là đường trung bình của △ABC.

⇒ DE = 1/2AB (1)

và: DE // AB (2)

Từ (1) suy ra: DE = 1/2 . 6 = 3.

b, Ta có: F là điểm đối xứng với D qua E nên:

DE = DF

⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)

Từ (2),(3) suy ra: ABDF là hình bình hành.

c, Do ABDF là hình bình hành nên:

AF // BD (4) và: AF = BD

Mặt khác, ta có: là trung điểm của BC

=> BD = BC. Mà: AF = BD (cmt)

=> BC = AF (5).

Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.

Ta lại có: AB⊥AC (góc A = 90o)

và: AB // DF

⇒ AC⊥DF.

Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:

ADCF là hình thoi.

Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.

Xét △ADE có: góc E = 90 (AC⊥DF)

⇒ AE+ DE= AD2 (Định lý Pythagore)

thay số: 4+ 32 = AD2

16 + 9 = AD2

25 = AD=> AD = 5 cm.

d, Để ADCF là hình vuông thì: AD⊥BC.

Mà: DC = DB = 1/2BC (gt) nên:

AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:

AB = AC

=> △ABC vuông cân tại A.

Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A

a) Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(gt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên MF//AE và MF=AE

Xét tứ giác AEMF có 

MF//AE(cmt)

MF=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)

c) Xét tứ giác AMCK có 

F là trung điểm của đường chéo AC

F là trung điểm của đường chéo MK

Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)