Tìm GTLN của các biểu thức sau: P=\(\frac{2x-1}{x-1}\left(x\inℤ\right)\)
Mong mọi người giúp đỡ, mình cần gấp lắm!! HELP ME!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(2\cdot\left(2-x\right)+\frac{1}{2}\cdot\left(2-x\right)^2=0\)
\(\Leftrightarrow\left(2-x\right)\left[2+\frac{1}{2}\left(2-x\right)\right]=0\)
\(\Leftrightarrow\left(2-x\right)\left(3-\frac{x}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\3-\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
2( 2 - x ) + 1/2( 2 - x )2
Đa thức có nghiệm <=> 2( 2 - x ) + 1/2( 2 - x )2 = 0
<=> ( 2 - x )[ 2 + 1/2( 2 - x ) ] = 0
<=> ( 2 - x )[ 2 + 1 - 1/2x ]
<=> ( 2 - x )( 3 - 1/2x ) = 0
<=> \(\orbr{\begin{cases}2-x=0\\3-\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
a) Với \(x\ge0\)và \(x\ne1\)ta có:
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-2x+5\sqrt{x}-3-x-5\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-\left(3x-10\sqrt{x}+7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-7\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}\)
b) \(P=\frac{-3\sqrt{x}+7}{\sqrt{x}+4}=\frac{-3\sqrt{x}-12+19}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=-3+\frac{19}{\sqrt{x}+4}\)
Vì \(x\ge0\); \(x\ne1\)\(\Rightarrow\sqrt{x}+4\ge4\)
\(\Rightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\)\(\Rightarrow P\le-3+\frac{19}{4}=\frac{7}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)( thỏa mãn )
Vậy \(maxP=\frac{7}{4}\)\(\Leftrightarrow x=0\)
Bài làm:
Ta có: \(P=\frac{2x-1}{x-1}=\frac{\left(2x-2\right)+1}{x-1}=2+\frac{1}{x-1}\)
Để P đạt GTLN
=> \(\frac{1}{x-1}\) đạt GTLN => \(x-1\) đạt giá trị dương nhỏ nhất
Mà x nguyên => x - 1 nguyên
=> \(x-1=1\Rightarrow x=2\)
Vậy Max(P) = 3 khi x = 2
\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)( ĐKXĐ : x khác 1 )
Để P đạt GTLN => \(\frac{1}{x-1}\)đạt GTNN
=> x - 1 là số dương nhỏ nhất
=> x - 1 = 1
=> x = 2 ( tmđk )
Vậy PMax = \(2+\frac{1}{2-1}=2+1=3\), đạt được khi x = 2
Mình không chắc nha -.-