K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

C = 2x2 + 2y2 + 26 + 12x - 8y

C = (2x2 + 12x + 18) + (2y2 - 8y + 8) 

C = 2(x2 + 6x + 9) + 2(y2 - 4y + 4)

C = 2(x + 3)2 + 2(y - 2)2 \(\ge\)0 với mọi x;y

Dấu "=" xảy ra <=> x + 3 = 0 và y - 2 = 0

<=> x = -3 và y = 2

Vậy MinC = 0 khi x = -3 và y = 2

\(C=2\left(x^2+6x+9\right)+2\left(y^2-4y+4\right)=2\left(x+3\right)^2+2\left(y-2\right)^2\ge0\)

Vậy MIN C=0 khi và chỉ khi x+3=y-2=0 suy ra x=-3;y=2

NV
16 tháng 4 2021

\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)

\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$

$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$

$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$

Vậy $P_{\min}=2018$

Giá trị này đạt tại $x+y-3=y-1=0$

$\Leftrightarrow y=1; x=2$

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

8 tháng 8 2019

5 tháng 7 2023

10?

5 tháng 7 2023

\(C=x^2+y^2-x+6x+10\\ =x^2+5x+y^2+10\\ =x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}+y^2+\dfrac{15}{4}\\ =\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\\y=0\end{matrix}\right.\)

Vậy GTNN của C là \(\dfrac{15}{4}\) khi x = \(-\dfrac{5}{2}\) và y = 0

20 tháng 12 2020
Bạn chơi ff ko 😀😀😀
20 tháng 12 2020

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

NV
6 tháng 8 2020

\(C=2\left(x^2+6x+9\right)+2\left(y^2-4y+4\right)\)

\(C=2\left(x+3\right)^2+2\left(y-2\right)^2\ge0\)

\(C_{min}=0\) khi \(\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

27 tháng 1 2019

Đáp án B.

Ta có  4 = 2 x + 2 y ≥ 2 2 x . 2 y = 2 2 x + y

⇔ 4 ≥ 2 x + y ⇔ x + y ≤ 2 .

Suy ra  x y ≤ x + y 2 2 = 1

Khi đó

P = 2 x 3 + y 3 + 4 x 2 y 2 + 10 x y 2 x + y x + y 2 - 3 x y + 2 x y 2 + 10 x y

≤ 4 4 - 3 x y + 4 x 2 y 2 + 10 x y

= 16 + 2 x 2 y 2 + 2 x y x y - 1 ≤ 18

Vậy Pmax = 18 khi x = y = 1.