K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Đánh sai đề kìa :v \(\frac{1}{\sqrt{b^2-ab+2a^2}}\) mới đúng. 

Cho \(a=b\rightarrow S=2\sqrt{2}\). Ta cm đây là gtln của S.

\(S\le\left(a+b\right)\sqrt{2\left(\frac{1}{a^2-ab+2b^2}+\frac{1}{b^2-ab+2a^2}\right)}\le2\sqrt{2}\)

\(\Leftrightarrow\left(5a^2-6ab+5b^2\right)\left(a-b\right)^2\ge0\)(bình phương lên quy đồng là xong)

Đẳng thức xảy ra khi a  = b.

6 tháng 8 2020

Đúng ko đấy ạ, sao em quy đồng lên ra \(20a^2b^2-16\left(a^3b+ab^3\right)+5\left(a^4+b^4\right)\)

Nhưng \(\left(a-b\right)^2\left(5a^2-6ab+5b^2\right)=5\left(a^4+b^4\right)+22a^2b^2-16\left(a^3b+ab^3\right)\)

20 tháng 5 2019

Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)

Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)

\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)

Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)

Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)

12 tháng 2 2018

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

6 tháng 5 2020

Áp dụng Bunhia cho bộ số (1;1;1) vfa (a;b;c) ta có 3(a2+b2+c2) >= (a+b+c)2

=> 3(2a2+b2) >=(2a+b2); 3(2b2+c2) >= (2b+c)2; 3(2c2+a2) >= (2c+a)2

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Ta có \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x+y+z}\)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+b}\le\frac{1}{9}\left[\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(I\right)\)

Ta có \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)

\(=3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\left(II\right)\)

Áp dụng Bunhia cho bộ số (1;1;1) và \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

=> \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left(III\right)\)

Từ (I)(II)(III) => \(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\cdot2015\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{3\cdot2015}\left(IV\right)\)

Từ (I)(IV) => \(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}\cdot\sqrt{3\cdot2015}=\sqrt{\frac{2015}{3}}\)

Vậy GTNN của P=\(\sqrt{\frac{2015}{3}}\)khi a=b=c và \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)

=> \(a=b=c=\sqrt{\frac{3}{2015}}\)

6 tháng 5 2020

Identitya,b,c đã dương???

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

18 tháng 8 2016

\(3\left(2a^2+b^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+a^2+b^2\right)\ge\left(a+a+b\right)^2=\left(2a+b\right)^2\)

\(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(gt\rightarrow7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\)

\(\Leftrightarrow7\left(x+y+z\right)^2=20\left(xy+yz+zx\right)+2015\)

Ta có: \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Rightarrow7\left(x+y+z\right)^2\le\frac{20}{3}\left(x+y+z\right)^2+2015\)

\(\Leftrightarrow\frac{1}{3}\left(x+y+z\right)^2\le2015\)

\(\Leftrightarrow x+y+z\le\sqrt{6045}\)

\(P\le\frac{1}{3}\left(x+y+z\right)\le\frac{\sqrt{6045}}{3}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{\sqrt{6045}}{3}\)hay \(a=b=c=\left(\frac{\sqrt{6045}}{3}\right)^{-1}\)