Cho tam giác ABC. Trên AB,AC về phía ngoài của tam giác dựng các hình vuông ABDE, ACMN. C/m: Trung tuyến qua A của tam giác AEN kéo dài chính là đường cao của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
a: Ta có: ABDE là hình vuông
=>AD là phân giác của góc BAE và \(\widehat{BAE}=\widehat{BDE}=\widehat{DEA}=\widehat{DBA}=90^0\)
AD là phân giác của góc BAE
=>\(\widehat{BAD}=\widehat{EAD}=\dfrac{\widehat{BAE}}{2}=45^0\)
Ta có: ACFK là hình vuông
=>AF là phân giác của góc KAC và \(\widehat{CAK}=\widehat{AKF}=\widehat{CFK}=\widehat{ACF}=90^0\)
\(\widehat{BAK}=\widehat{BAC}+\widehat{CAK}\)
\(=90^0+90^0=180^0\)
=>B,A,K thẳng hàng
AF là phân giác của góc CAK
=>\(\widehat{KAF}=\widehat{CAF}=\dfrac{1}{2}\cdot90^0=45^0\)
=>\(\widehat{DAB}=\widehat{FAK}\)(=45 độ)
mà \(\widehat{FAK}+\widehat{BAF}=180^0\)(hai góc kề bù)
nên \(\widehat{DAB}+\widehat{BAF}=180^0\)
=>\(\widehat{DAF}=180^0\)
=>D,A,F thẳng hàng
b: ta có: \(\widehat{BAC}+\widehat{BAE}=\widehat{EAC}\)
=>\(\widehat{EAC}=90^0+90^0=180^0\)
=>E,A,C thẳng hàng
Xét ΔABE vuông tại A và ΔAKC vuông tại A có
\(\dfrac{AB}{AK}=\dfrac{AE}{AC}\)
Do đó: ΔABE đồng dạng với ΔAKC
=>\(\widehat{ABE}=\widehat{AKC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BE//KC
Ta có: BK=BA+AK
EC=EA+AC
mà AK=AC và BA=EA
nên BK=EC
Xét tứ giác BEKC có BE//KC và BK=EC
nên BEKC là hình thang cân
thiếu hình