1 )/x 2 -72 /-2=70
2 )x2 -5 /x/ =14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(82 - 5.x) : 13 - 4 = 0
(82 - 5.x) : 13 = 0 + 4
(82 - 5.x) : 13 = 4
(82 - 5.x) = 4 . 13
(82 - 5.x) = 52
5.x = 82 - 52
5.x = 30
x = 30 : 5 = 6
(32 . 45) : 2 = (x + 70) : 14 - 40
720 = (x + 70) : 14 - 40
(x + 70) : 14 = 720 + 40
(x + 70) : 14 = 760
(x + 70) = 760 . 14
(x + 70) = 10640
x = 10640 - 70
x = 10570
1. Đặt $x^2+x=a$ thì pt trở thành:
$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$
$\Leftrightarrow (a-2)(a+6)=0$
$\Leftrightarrow a-2=0$ hoặc $x+6=0$
$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$
Dễ thấy $x^2+x+6=0$ vô nghiệm.
$\Rightarrow x^2+x-2=0$
$\Leftrightarrow (x-1)(x+2)=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
2.
$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$
$\Leftrightarrow (x^2+x)(x^2+x-2)=24$
$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)
$\Leftrightarrow a^2-2a-24=0$
$\Leftrightarrow (a+4)(a-6)=0$
$\Leftrightarrow a+4=0$ hoặc $a-6=0$
$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$
Nếu $x^2+x+4=0$
$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)
Nếu $x^2+x-6=0$
$\Leftrightarrow (x-2)(x+3)=0$
$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$
31x72 - 31x70 - 31 x 2 - 31
=31x(72 -70 -2 -1)
=31 x (-1)
= -31
những câu sau thì lam tương tự nha bạn ^_^
\(\dfrac{5}{7}=\dfrac{70}{98};\dfrac{2}{5}=\dfrac{14}{35};\dfrac{1}{8}=\dfrac{9}{72};\dfrac{120}{80}=\dfrac{3}{2}\)
\(\dfrac{5}{7}=\dfrac{70}{98}\)
\(\dfrac{2}{5}=\dfrac{14}{35}\)
\(\dfrac{1}{8}=\dfrac{9}{72}\)
\(\dfrac{120}{80}=\dfrac{3}{2}\)
a: Đặt |x|=a
Pt trở thành \(3a^2-14a-5=0\)
=>(a-5)(3a+1)=0
=>a=5(nhận) hoặc a=-1/3(loại)
=>x=-5 hoặc x=5
c: \(\left|x+2\right|-2x+1=x^2+2x+3\)
\(\Leftrightarrow\left|x+2\right|=x^2+4x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+4x+2>=0\\\left(x^2+4x+2-x-2\right)\left(x^2+4x+2+x+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+5x+4\right)=0\)
hay \(x\in\left\{0;-3;-1;-4\right\}\)
1/ \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)
Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
(1) \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\\ \Leftrightarrow\left(16+21+12-5\right)x=-5-28\\ \Leftrightarrow44x=-33\\ \Leftrightarrow x=-\dfrac{3}{4}\) (Thỏa mãn)
Vậy \(x=-\dfrac{3}{4}\).
2/ \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\) (2)
Điều kiện: \(x\ne\pm1\)
(2)\(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)-2x}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow x\left(x+1\right)-2x=0\\ \Leftrightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
So sánh với điều kiện \(\Rightarrow x=0\) là nghiệm của PT.
3/ \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\) (3)
Điều kiện: \(x\ne\pm3\)
(3)\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\\ \Leftrightarrow-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ \Leftrightarrow-\left(x+3\right)-14=\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow-x-17=x^2-9\Leftrightarrow x^2+x+8=0\) (Vô nghiệm do \(x^2+x+8>0\qquad\forall x\)).
Vậy PT vô nghiệm.
4/ \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) (4)
Điều kiện: \(x\ne\pm1\)
(4)\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (loại)
Vậy PT vô nghiệm.
5/ \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) (5)
Điều kiện: \(x\ne0\)
(5)\(\Leftrightarrow x+\dfrac{1}{x}=\left(x+\dfrac{1}{x}\right)^2-2\)
Đặt \(t=x+\dfrac{1}{x}\), ta có: \(t=t^2-2\\ \Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\end{matrix}\right.\)
Với \(t=2\) ta có: \(x+\dfrac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) (thỏa mãn)
Với \(t=-1\) ta có: \(x+\dfrac{1}{x}=-1\Leftrightarrow x^2+1=-x\Leftrightarrow x^2+x+1=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
6/ \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\) (6)
Điều kiện: \(x\ne-1\)
(6)\(\Leftrightarrow\dfrac{x-1}{x^2+4}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\end{matrix}\right.\)
\(x-1=0\Leftrightarrow x=1\) (Thỏa mãn)
\(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\Leftrightarrow\dfrac{1}{x^2+4}=\dfrac{1}{x+1}\Leftrightarrow x^2+4=x+1\\ \Leftrightarrow x^2-x+3=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
1) ĐKXĐ: \(x\notin\left\{1;-\dfrac{4}{3}\right\}\)
Ta có: \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+16x+21x+28=12x^2+12x+5x-5\)
\(\Leftrightarrow12x^2+37x+28-12x^2-17x+5=0\)
\(\Leftrightarrow20x+33=0\)
\(\Leftrightarrow20x=-33\)
\(\Leftrightarrow x=-\dfrac{33}{20}\)(nhận)
Vậy: \(S=\left\{-\dfrac{33}{20}\right\}\)
2) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
Suy ra: \(x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)
Vậy: S={0}
3) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\)
\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\)
\(\Leftrightarrow\dfrac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(-x-3-14=x^2-9\)
\(\Leftrightarrow x^2-9=-x-17\)
\(\Leftrightarrow x^2-9+x+17=0\)
\(\Leftrightarrow x^2+x+8=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{31}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}=0\)(vô lý)
Vậy: \(S=\varnothing\)
4) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
5) ĐKXĐ: \(x\ne0\)
Ta có: \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)
\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x^4+1}{x^2}\)
\(\Leftrightarrow x^2\left(x^2+1\right)=x\left(x^4+1\right)\)
\(\Leftrightarrow x^4+x^2=x^5+x\)
\(\Leftrightarrow x^5+x-x^4-x^2=0\)
\(\Leftrightarrow x\left(x^4-x^3-x+1\right)=0\)
\(\Leftrightarrow x\left[x^3\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\)
nên \(x\cdot\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x-1=0\end{matrix}\right.\Leftrightarrow x=1\)
Vậy: S={1}
6) ĐKXĐ: \(x\in R\)
Ta có: \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^2+x-3\right)=0\)
\(\Leftrightarrow-\left(x-1\right)\left(x^2-x+3\right)=0\)
mà \(x^2-x+3>0\)
nên x-1=0
hay x=1(nhận)
Vậy: S={1}
a)\(x=\dfrac{-14\cdot52}{72}\\ x=\dfrac{-91}{9}\)
b)\(x=\dfrac{120\cdot7.2}{70}\\ x=\dfrac{432}{35}\)
c)\(x=\dfrac{2\dfrac{2}{3}\cdot8.5}{5}\\ x=\dfrac{68}{15}\)
d)\(x=\dfrac{4\dfrac{2}{5}\cdot9.5}{8}\\ x=\dfrac{209}{40}\)
1: Ta có: \(\left|x^2-72\right|-2=70\)
\(\Leftrightarrow\left|x^2-72\right|=72\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-72=72\\x^2-72=-72\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=144\\x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\\x=0\end{matrix}\right.\)
Vậy: S={0;-12;12}
2: Ta có: \(x^2-5\left|x\right|=14\)
\(\Leftrightarrow5\left|x\right|=x^2-14\)(*)
Trường hợp 1: x≥0
(*)\(\Leftrightarrow5x=x^2-14\)
\(\Leftrightarrow x^2-14=5x\)
\(\Leftrightarrow x^2-5x-14=0\)
\(\Leftrightarrow x^2-7x+2x-14=0\)
\(\Leftrightarrow x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Trường hợp 2: x<0
(*)\(\Leftrightarrow-5x=x^2-14\)
\(\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow x^2+7x-2x-14=0\)
\(\Leftrightarrow x\left(x+7\right)-2\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)
Vậy: S={-7;7}