K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 cho hình chóp S.ABCD đều có SA=AB=a. Góc giữa SA và CD là 2 Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=\(\frac{\sqrt{x^2-1}}{x-2}\) trên tập hợp D= \(\left(-\infty;-1\right)\cup\left[1;\frac{3}{2}\right]\) . Tính M+m A .P=2 B P=0 C P=-\(\sqrt{5}\) D P = \(\sqrt{3}\) 3 Tập nghiệm của bất phương trình \(\left(\frac{1}{1+a^2}\right)^{2x+1}\) >1 ( với a là tham số , a#0) là 4 Trong ko gian cho tam giác ABC vuông tại A ,AB=a,...
Đọc tiếp

1 cho hình chóp S.ABCD đều có SA=AB=a. Góc giữa SA và CD là

2 Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=\(\frac{\sqrt{x^2-1}}{x-2}\) trên tập hợp D= \(\left(-\infty;-1\right)\cup\left[1;\frac{3}{2}\right]\) . Tính M+m

A .P=2

B P=0

C P=-\(\sqrt{5}\)

D P = \(\sqrt{3}\)

3 Tập nghiệm của bất phương trình \(\left(\frac{1}{1+a^2}\right)^{2x+1}\) >1 ( với a là tham số , a#0) là

4 Trong ko gian cho tam giác ABC vuông tại A ,AB=a, AC=\(a\sqrt{3}\) . Tính độ dài đường sinh l của hình nón có được khi quay tam giác ABC xung quanh trục AB

5 Viết công thức tính V của vật thể nằm giữa hai mp x=0, x=ln4, biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x (\(0\le x\le ln4\)), ta được thiết diện là một hình vuông cạnh là \(\sqrt{xe^x}\)

6 cho cấp số cộng có u1=0 và công sai d =3. Tổng của 26 số hạng đầu tiên của cấp số cộng đó bằng bao nhiêu

7 cho khối chóp tam giác có đường cao bằng 100cm và cạnh đáy 20cm,21cm,29cm. Tính thể tích khối chóp

8 cho hai điểm A(-2;1;2),B(0;-1;1).Phương trình mặt cầu đường kính AB

9 Cho hình lập phương ABCD.\(A^,B^,C^,D^,\) , gÓC giữa hai đường thẳng \(B^,A\) và CD bằng

10 Tổng giá trị lớn nhất và nhỏ nhất của hàm số y= \(\sqrt{2-x^2}-x\) bằng

A \(2+\sqrt{2}\)

B 2

C 1

D \(2-\sqrt{2}\)

11 Số giao điểm của đồ thị hàm số y= \(x^2/x^2-4/\) với đường thẳng y=3 là

12 Tập nghiệm của bất pt \(log_{\frac{1}{3}}\left(x+1\right)>log_3\left(2-x\right)\) là S =(a;b) \(\cup\) (c;d) với a,b,c,d là các số thực. Khi đó a+b+c+d bằng

A 4

B 1

C 3

D 2

13 Tính thể tích khối tròn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB

14 trong ko gian với hệ trục tọa độ Oxyz, cho đường thẳng d :\(\frac{x-1}{1}=\frac{y+2}{-1}=\frac{z}{2}\) . MẶT phẳng (P) đi qua điểm M (2;0;-1) và vuông góc vói d có pt là

A x-y+2z=0

B x-2y-2=0

C x+y+2z=0

D x-y-2z=0

14
AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Bài 14:

Vecto chỉ phương của đường thẳng $d$ là: $\overrightarrow{u_d}=(1; -1; 2)$

Mp $(P)$ vuông góc với $d$ nên nhận $\overrightarrow{u_d}$ là vecto pháp tuyến

Do đó PTMP $(P)$ là:

$1(x-x_M)-1(y-y_M)+2(z-z_M)=0$

$\Leftrightarrow x-y+2z=0$

Đáp án A

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Bài 13:

Khi quay tam giác đều ABC quanh cạnh AB thì ta thu được một khối hình là hợp của 2 hình nón (ngược chiều nhau) có cùng bán kính đáy $r$ là đường cao của tam giác đều, tức là $r=\frac{\sqrt{3}}{2}.1=\frac{\sqrt{3}}{2}$ và đường cao là $h=\frac{AB}{2}=\frac{1}{2}$

Thể tích 1 hình nón: $V_n=\frac{1}{3}\pi r^2h=\frac{\pi}{8}$

Do đó thể tích của khối hình khi quay tam giác đều ABC quanh AB là: $2V_n=\frac{\pi}{4}$

NV
14 tháng 4 2022

1. Câu này đề bài là: \(\lim\limits_{x\rightarrow1}\dfrac{x-\sqrt[]{x+2}}{x-\sqrt[3]{3x+2}}\) đúng ko nhỉ?

Vậy thay số là được: \(=\dfrac{1-\sqrt[]{1+2}}{1-\sqrt[3]{3+2}}=\dfrac{1-\sqrt[]{3}}{1-\sqrt[3]{5}}\)

2. 

a. \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

b.

Trong mp (ABCD), từ D kẻ \(DE\perp AC\) (1)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp DE\) (2)

(1);(2) \(\Rightarrow DE\perp\left(SAC\right)\Rightarrow SE\) là hình chiếu vuông góc của SD lên (SAC)

\(\Rightarrow\widehat{DSE}\) là góc giữa SD và (SAC) hay \(\widehat{DSE}=\alpha\)

\(AC=\sqrt{AB^2+AD^2}=a\sqrt{5}\)

Áp dụng hệ thức lượng trong tam giác vuông ADC:

\(AE.AC=AD^2\Rightarrow AE=\dfrac{AD^2}{AC}=\dfrac{4a\sqrt{5}}{5}\)

\(SE=\sqrt{SA^2+AE^2}=\dfrac{a\sqrt{105}}{5}\) ; \(SD=\sqrt{SA^2+AD^2}=a\sqrt{5}\)

\(\Rightarrow cos\alpha=\dfrac{SE}{SD}=\dfrac{\sqrt{21}}{5}\)

14 tháng 4 2022

Dạ em cảm ơn thầy nhiều ạ.

26 tháng 12 2019

8 tháng 5 2018

2 tháng 6 2019

Đáp án C.

Xét hàm số  y = x 2 - 1 x - 2  trên D, có   f ' x = 1 - 2 x x - 2 2 x 2 - 1 ;   ∀ x ∈ D .

Trên khoảng  - ∞ ; - 1 ;  có  f ' x > 0 ⇒ f x  là hàm số đồng biến trên   - ∞ ; - 1

Trên khoảng  1 ; 3 2 , có f ' x < 0 ⇒ f x  f(x) là hàm số nghịch biến trên  1 ; 3 2 . 

Dựa vào BBT, suy ra M = f 1 = 0  và m = f 3 2 = - 5 . Vậy P = M.m = 0

2 tháng 4 2019

Chọn đáp án B

Do S.ABCD là hình chóp tứ giác đều nên mỗi mặt bên là một tam giác cân tại đỉnh S.

Theo giả thiết ta có

 

Cắt hình chóp theo cạnh bên SA rồi trải các mặt bên thành một mặt phẳng ta được hình vẽ bên sao cho khí ghép lại thì A ≡ A '

Suy ra A S A ' ⏜ = 4 . A S B ⏜ = π 3 và ∆ S A A ' đều cạnh SA = a

Khi đó tổng AM + MN + NP + PQ là tổng của các đường gấp khúc.

Tổng này đạt nhỏ nhất bằng AQ nếu xảy ra trường hợp các điểm A, M, N, P, Q thẳng hàng.

Mà  ∆ S A A ' đều có Q là trung điểm SA nên A Q = S A 3 2 = a 3 2  

Vậy m i n A M + M N + N P + P Q = a 3 2   

 

21 tháng 2 2018

13 tháng 6 2017

Chọn A

7 tháng 2 2018

3 tháng 11 2023

A là đáp án đúng!