Giải phương trình: \(\left(2x-1\right)^2\)=\(12\sqrt{x^2-x-2}+1\)
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
đặt \(a=\sqrt{x+3}\), \(b=\sqrt{x-1}\)
khi đó \(\sqrt{x^2+2x-3}=ab\) và \(4=a^2-b^2\)
PT: (a - b)(1 + ab) = a2 - b2 hay (a - b)(1 + ab) = (a - b)(a + b).
* a - b = 0 (tự giải).
* 1 + ab = a + b hay 1 + 2ab + (ab)2 = a2 + 2ab + b2
hay 1 + (x2 + 2x - 3) = (x + 3) + (x - 1) (tự giải)
mik rất muốn tl giúp bạn nhưng mik ms có hok lớp 8 thôi Ayakashi
ĐK: \(x\le-1\)hoặc \(x\ge2\)
\(\left(2x-1\right)^2=12\sqrt{x^2-x-2}+1\Leftrightarrow4x^2-4x-12\sqrt{x^2-x-2}=0\)
\(\Leftrightarrow x^2-x-2-3\sqrt{x^2-x-2}+2=0\)
Đặt \(t=\sqrt{x^2-x-2}\ge0\). Phương trình trên trở thành \(t^2-3t+2=0\)
Đến đây bạn tự giải tiếp
điều kiện x2-x-2 >=0 <=> x=< -1; x>= 2
ta biến đổi phương trình về dạng (2x-1)2=\(12\sqrt{x^2-x+1}+1\Leftrightarrow4x^2-4x+1=12\sqrt{x^2-x+1}+1\Leftrightarrow x^2-x=3\sqrt{x^2-x-2}\)
đặt t=\(\sqrt{x^2-x-2}\ge0\)thì t2=x2-x-2 thay vào phương trình ta được
t2+2-3t=0 <=> t=1 và t=2
với t=1 ta được x2-x-3=0 => \(x=\frac{1\pm\sqrt{13}}{2}\)
với t=2 ta đươc x2-x-6=0 => x=-2; x=3
các nghiệm này đều thỏa mãn điều kiện
vậy \(x=\left\{-2;3;\frac{1\pm\sqrt{13}}{2}\right\}\)là các nghiệm của phương trình