Cho f(x) liên tục trên R thỏa mãn \(\int_0^{\frac{1}{2}}f\left(\sqrt{1-2x^2}\right)dx\) = \(\frac{7}{6}\) và f (\(\frac{1}{\sqrt{2}}\)) =1. Tính I = \(\int_0^{\frac{\Pi}{4}}f'\left(cosx\right)sin^2xdx\)
A. \(\frac{1}{2}\) B.\(\frac{\sqrt{2}}{3}\) C. \(\frac{2\sqrt{2}}{3}\) D. 1
Đặt \(x=\frac{\sqrt{2}}{2}sint\Rightarrow dx=\frac{\sqrt{2}}{2}cost.dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=\frac{1}{2}\Rightarrow t=\frac{\pi}{4}\end{matrix}\right.\)
\(\int\limits^{\frac{1}{2}}_0f\left(\sqrt{1-2x^2}\right)dx=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cost\right).costdt=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right)cosxdx=\frac{7}{6}\)
\(\Rightarrow J=\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right).cosx.dx=\frac{7\sqrt{2}}{6}\)
Đặt \(\left\{{}\begin{matrix}u=f\left(cosx\right)\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.f'\left(cosx\right)dx\\v=sinx\end{matrix}\right.\)
\(\Rightarrow J=sinx.f\left(cosx\right)|^{\frac{\pi}{4}}_0+\int\limits^{\frac{\pi}{4}}_0f'\left(cosx\right)sin^2x.dx=\frac{\sqrt{2}}{2}+I\)
\(\Rightarrow I=\frac{7\sqrt{2}}{6}-\frac{\sqrt{2}}{2}=\frac{2\sqrt{2}}{3}\)