K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2020

Ta có: -|5x - 2| \(\le\)\(\forall\)x

- |3y + 12| \(\le\)\(\forall\)y

=> 4 - |5x - 2| - |3y + 12| \(\le\)\(\forall\)x; y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)

Vậy MaxE = 4 khi x = 2/5 và y = -4

27 tháng 7 2020

Ta có : E = 4 - |5x - 2| - |3y + 12| 

= 4 - (|5x - 2| + |3y + 12|)

Ta có : \(\hept{\begin{cases}\left|5x-2\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5x-2\right|+\left|3y+12\right|\ge0\forall x;y\)

=> \(-\left(\left|5x-2\right|+\left|3y+12\right|\right)\le0\forall x;y\)

=> \(4-\left(\left|5x-2\right|+\left|3y+12\right|\right)\le4\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)

Vậy GTLN của E là 4 khi x = 2/5 ; y = - 4

c) Ta có: \(\left|5x-2\right|\ge0\forall x\)

\(\left|3y+12\right|\ge0\forall y\)

Do đó: \(\left|5x-2\right|+\left|3y+12\right|\ge0\forall x,y\)

\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|\le0\forall x,y\)

\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|+4\le4\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

28 tháng 7 2021

bạn làm bài nào đây ạ? 4 - |5x-2| - |3y + 12| mà đâu phải −|5x−2|−|3y+12|+4

a, Ta có : \(\left|2x-1,5\right|\ge0\) với mọi x

\(\Rightarrow5,5-\left|2x-1,5\right|\le5,5\)với mọi x

\(\Rightarrow MaxD=5,5\)

**** nhé ^^

18 tháng 9 2018

28 tháng 9 2020

a) Ta có: \(C=-\left|x+2\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+2\right|=0\Rightarrow x=-2\)

Vậy Max(C) = 0 khi x = -2

b) Ta có: \(D=1-\left|2x-3\right|\le1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x-3\right|=0\Rightarrow x=\frac{3}{2}\)

Vậy Max(D) = 1 khi x = 3/2

28 tháng 9 2020

d) \(D=-\left|x+\frac{5}{2}\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+\frac{5}{2}\right|=0\Rightarrow x=-\frac{5}{2}\)

Vậy Max(D) = 0 khi x = -5/2

e) \(P=4-\left|5x-3\right|-\left|3y+12\right|\le4\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|5x-3\right|=0\\\left|3y+12\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=-4\end{cases}}\)

Vậy Max(P) = 4 khi \(\hept{\begin{cases}x=\frac{3}{5}\\y=-4\end{cases}}\)

12 tháng 7 2017

Ta có : |10,2 - 3x| \(\ge0\forall x\)

Nên : E = |10,2 - 3x| - 14  \(\ge-14\forall x\)

Vậy Emin = -14 , dấu "=" xảy ra khi và chỉ khi x = 3,4

1 tháng 1 2016

ta có /5x-2/ luôn lớn hơn hoặc bằng 0 với mọi x

       /3y+12/luôn lớn hơn hoặc bằng 0 với mọi y

Do đó giá trị nhỏ nhất của M luôn bé hơn 4(tớ nghĩ dễ bị sai đề phải là 2 dấu cộng hoặc 2 chữ x chứ

1 tháng 1 2016

M=4- [ 5x-2] - [3y+12]

Ta có:[5x-2]>(hoặc bằng) 0

        -[5x-2]<(hoặc bằng) 0

      4-[5x-2]<(hoặc bằng) 0+4

      4-[5x-2]<(hoặc bằng) 4

Dấu "=" xảy ra khi 5x-2=0

                               5x=0+2 

                               5x=2

                                 x=2:5

                                  x=0,4

Ta có:[3y+12]>(hoặc bằng) 0

         -[3y+12]<(hoặc bằng) 0

         4-[3y+12]<(hoặc bằng) 0+4

         4-[3y+12]<(hoặc bằng) 4

Dấu "=" xảy ra khi 3y+12=0

                                 3y=0+12

                                 3y=12

                                   y=12:3

                                   y=4 

Ta có M=4-[5x-2]-[3y+12] 

Suy ra M=4-[5.0,4-2]-[3.4+12]=-20

Vậy m=-20 khi x=0,4 ; y=4