Tìm nghiệm của pt: \(2sin^2x-3sinx+1=0\) sao cho \(0\le x< \pi\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
3) 2sin^2 x - 3sinx + 1 = 0
Đặt t = sin x
(*) <=> 2t^2 - 3t + 1 = 0
<=> t = 1 (nhận) or t = 1/2 (nhận)
.Vs t = 1 => sinx = 1
<=> x = π/2 + k2π (k thuộc Z) (nhận)
.Vs t = 1/2 => sinx = 1/2
<=> sinx = sin π/6
<=> x = π/6 + k2π (k thuộc Z) (nhận)
Vậy ...
2) cos^2 x + cosx = 0
Đặt t = cosx
(*) <=> t^2 + t =0 <=> t = 0 (n) or t = -1 (n)
. Vs t = 0 => cosx = 0 <=> x = π/2 + kπ (loại)
.Vs t = -1 => cosx = -1 <=> x = π + k2π (nhận)
Vậy ...
1) (sin3x)/cosx + 1 = 0
ĐK: cosx + 1 ≠ 0 <=> cosx ≠ -1 <=> x ≠ π + k2π
<=> sin3x = 0
<=> 3x = kπ
<=> x = 1/3 kπ (k thuộc Z) (n)
Vậy ...
a) Dat sin x = y
y2 - 3y - 4= 0
y = -1 hoac y = 4 (loai)
voi y = -1 thi sin x = -1 => \(x=-\frac{\pi}{2}+2k\pi\)
b) Chia hai ve cho 2 ta co:
\(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin2x\)
\(cos\frac{\pi}{6}sinx+sin\frac{\pi}{6}cosx=sin2x\)
\(sin\left(x+\frac{\pi}{6}\right)=sin2x\)
\(x+\frac{\pi}{6}=2x+2k\pi\) hoac \(x+\frac{\pi}{6}=\pi-2x+2k\pi\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
\(sinx+cos\left(2x+\dfrac{\Omega}{3}\right)=0\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=-sinx=sin\left(-x\right)\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=cos\left(\dfrac{\Omega}{2}+x\right)\)
=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{3}=x+\dfrac{\Omega}{2}+k2\Omega\\2x+\dfrac{\Omega}{3}=-x-\dfrac{\Omega}{2}+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{6}+k2\Omega\\3x=-\dfrac{5}{6}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{5}{6}\Omega+k2\Omega\\x=-\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)
TH1: \(x=\dfrac{5}{6}\Omega+k2\Omega\)
\(0< =x< =2\Omega\)
=>\(0< =\dfrac{5}{6}\Omega+k2\Omega< =2\Omega\)
=>\(-\dfrac{5}{6}\Omega< =k2\Omega< =\dfrac{7}{6}\Omega\)
=>\(-\dfrac{5}{6}< =2k< =\dfrac{7}{6}\)
=>-5/12<=k<=7/12
mà k nguyên
nên k=0
TH2: \(x=-\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\)
\(0< =x< =2\Omega\)
=>\(0< =-\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}< =2\Omega\)
=>\(\dfrac{5}{18}\Omega< =\dfrac{k2\Omega}{3}< =\dfrac{41}{18}\Omega\)
=>\(\dfrac{5}{18}< =\dfrac{2k}{3}< =\dfrac{41}{18}\)
=>\(\dfrac{5}{6}< =2k< =\dfrac{41}{6}\)
=>\(\dfrac{5}{12}< =k< =\dfrac{41}{12}\)
mà k nguyên
nên \(k\in\left\{1;2;3\right\}\)
=>Có 4 nghiệm thỏa mãn
\(2sin^2x-3sinx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)
Do 0\(\le\) x<\(\pi\) nên :
+ \(0\le\frac{\pi}{2}+k2\pi< \pi\) <=> \(-\frac{1}{4}\le k< \frac{1}{4}\) => \(x_1=\frac{\pi}{2}\)
+ \(0\le\frac{\pi}{6}+k2\pi< \pi\Leftrightarrow-\frac{1}{12}\le k< \frac{5}{12}\) => \(x_2=\frac{\pi}{6}\)
+ \(0\le\frac{5\pi}{6}+k2\pi< \pi\Leftrightarrow-\frac{5}{12}\le k< \frac{1}{12}\) => x3 = \(\frac{5\pi}{6}\)