Cho x,y là 2 số dương thoả : x3 + y3 = x4 + y 4 = x5 + y5
Tinh x6 + y6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi x = - 1; y = 1 thì xy = (-1).1= -1
Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6
= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6
= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6
= -1 – 1 + (-1) – 1 + (-1) – 1
= - 6
Chọn đáp án D
2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
Ta có:
\(x^4+y^4=x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)
<=> \(x^4+y^4=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^4+y^4\right)\)
<=> \(\left(x^4+y^4\right)\left(x+y-xy-1\right)=0\)
<=> \(x+y-xy-1=0\) vì x; y dương
<=> \(\left(x-1\right)-y\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(1-y\right)=0\)
<=> x = 1 hoặc y = 1
Với x = 1 ta có: \(y^3=y^4=y^5\Leftrightarrow y=1\)
Với y = 1 ta có: x = 1
Vậy x^6 + y^6 = 1^6 + 1^6 = 2