lời giải bằng SOS khá cồng kềnh và phức tạp , liệu ai có thể giải ?
Cho a,b,c là độ dài 3 cạnh của tam giác , CMR
\(Sigma\frac{a}{b+c}+\frac{ab+bc+ca}{a^2+b^2+c^2}\le\frac{5}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left(Σab\right)}{Σa^2}\le\frac{2\left(Σa^2\right)}{a^2}=2\)
tuc la can cm \(Σ\frac{a}{b+c}\le\frac{7}{2}-2=\frac{3}{2}\)
Nguoc dau voi BDT Nesbitt
vay BDT sai ko xay ra dau = maybe :3
Bất đẳng thức này mà ko loạn dấu thì tự làm đc r. Nhưng vế trước>=3/2, vế sau<=2 quá loạn dấu
Áp dụng BĐT côsi ta có:
a² + bc ≥ 2.a√(bc)
<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1)
tương tự vậy:
1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2)
1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3)
lấy (1) + (2) + (3)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab))
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc
<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!)
Ta chứng minh bổ đề:
√(ab) + √(bc) + √(ac) ≤ a + b + c
thật vậy, áp dụng BĐT côsi ta được:
a + b ≥ 2√(ab) --- (*)
a + c ≥ 2√(ac) --- (**)
b + c ≥ 2√(bc) --- (***)
lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ]
<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@)
từ (!) và (@)
=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )
Áp dụng AM - GM:
\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)
Khi đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)
\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)
Ta có : \(Sin\frac{A}{2}=Sin\widehat{BAM}=Sin\widehat{CAM}=\frac{BH}{AB}=\frac{CK}{CA}\)
\(\Rightarrow sin\frac{A}{2}=\frac{BH}{b}=\frac{CK}{c}\Rightarrow sin^2\frac{A}{2}=\frac{BH.CK}{bc}\)
Lại có : \(BH\le BM;CK\le CM\)
\(\Rightarrow sin^2\frac{A}{2}\le\frac{BM.CM}{bc}\le\frac{\frac{\left(BM+CM\right)^2}{4}}{bc}=\frac{\frac{BC^2}{4}}{bc}=\frac{a^2}{4bc}\)
\(\Rightarrow sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\) (đpcm)
Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)
Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)
Và lượng trên tử bé hơn bằng \(ab+bc+ca\)
Vì a, b, c là độ dài ba cạnh của tam giác suy ra :a,b, c >0
Áp dụng bđt cosi ta có
\(a^2+bc\ge2a\sqrt{bc}\)
\(b^2+ac\ge2b\sqrt{ac}\)
\(c^2+ab\ge2c\sqrt{ab}\)
Suy ra
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)
\(=\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\left(1\right)\)
Theo bđt cosi \(\frac{a+b}{2}\ge\sqrt{ab}\)
do đó (1) \(\Leftrightarrow\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\le\frac{1}{2}\left(\frac{\frac{b+c}{2}+\frac{a+c}{2}+\frac{a+b}{2}}{abc}\right)\)
\(=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=\frac{a+b+c}{2abc}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\left(đpcm\right)\)
Dễ mà, cần t sol ko?
Schur thử xem?