Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{3x}.\left(1+\frac{1}{x+y}\right)=2\\\sqrt{7y}.\left(1-\frac{1}{x+y}\right)=4\sqrt{2}\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)
3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
ĐKXĐ: ....
Nhận thấy \(x=0\) hoặc \(y=0\) ko phải nghiệm của hệ, hệ tương đương:
\(\left\{{}\begin{matrix}1+\frac{1}{x+y}=\frac{2}{\sqrt{3x}}\\1-\frac{1}{x+y}=\frac{4\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)
Lần lượt cộng trừ 2 vế của hệ: \(\Rightarrow\left\{{}\begin{matrix}2=\frac{2}{\sqrt{3x}}+\frac{4\sqrt{2}}{\sqrt{7y}}\\\frac{2}{x+y}=\frac{2}{\sqrt{3x}}-\frac{4\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)
Nhân vế với vế và rút gọn: \(\frac{1}{x+y}=\frac{1}{3x}-\frac{8}{7y}\)
\(\Leftrightarrow\left(x+y\right)\left(7y-24x\right)=21xy\)
\(\Leftrightarrow24x^2-38xy+7y^2=0\)
\(\Leftrightarrow\left(6x-y\right)\left(4x+7y\right)=0\Leftrightarrow y=6x\)
Thay vào pt đầu:
\(\sqrt{3x}\left(1+\frac{1}{7x}\right)=2\Leftrightarrow\frac{1}{7x}-\frac{2}{\sqrt{3x}}+1=0\)
Đặt \(\frac{1}{\sqrt{3x}}=a>0\Rightarrow\frac{1}{x}=3a^2\)
Pt trở thành: \(\frac{3a^2}{7}-2a+1=0\) (bạn tự giải quyết nốt phần còn lại)