Tính:
1)1+1/2.(1+2)+1/3.(1+2+3)+...+1/100.(1+2+3+...+100)
2)(1+17)(1+17/2)(1+17/3)...(1+17/19) / (1+19)(1+19/2)(1+19/3)...(1+19/17)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right)}\)
\(=\frac{18.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}...\frac{36}{17}}=\frac{18.19.20...36}{1.2.3...19}:\frac{20.21.22...36}{1.2.3...17}\)
\(=\frac{18.19.20...36}{1.2.3...19}.\frac{1.2.3...17}{20.21.22....36}=\frac{1.2.3...17.18...36}{1.2.3...19.20...36}=1\)
\(M=\frac{18.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}...\frac{36}{17}}=\frac{\frac{18.19.20...36}{2.3...19}}{\frac{20.21.22...36}{2.3...17}}=\frac{\frac{18.19}{18.19}}{1}=\frac{1}{1}=1\)