Cho tam giác ABC vuông tại A .Trên tia đối của tia AC lấy điểm D sao cho AD=AC. Chứng minh rằng :
a, BA là tia phân giác của góc CBD
b, Treeb tia đối của tia BA lấy điểm M sao cho BA=BM. Chưng minh tam giác MBD=MBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình, giả thiết, kết luận tự vẽ, viết đi
Xét △ABC vuông tại A và △ABD vuông tại A
Có: AC = AD (gt)
AB là cạnh chung
=> △ABC = △ABD (cgv)
=> ABC = ABD (2 góc tương ứng)
Và BA nằm giữa CBD
=> BA là phân giác của CBD
b, Vì △ABC = △ABD (cmt)
=> BC = BD (2 cạnh tương ứng)
Ta có: CBA + CBM = 180o (2 góc kề bù)
DBA + DBM = 180o (2 góc kề bù)
Mà ABC = ABD (cmt)
=> CBM = DBM
Xét △CBM và △DBM
Có: BC = BD (cmt)
CBM = DBM (cmt)
BM là cạnh chung
=> △CBM = △DBM (c.g.c)
GT:cho tam giác vuông ABC ( A vuông)
AC=AD ; DAC thẳng hàng;D khác C
KL: BA là tia phân giác của góc ABD
tam giác MBC=MBD
a), xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh cung
nên tam giác ABC = tam giác ADC (c-g-c)
mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà ba nằm giữa
=> ba là tia phân giác của góc CBD
b), xét tam giác MBCvàMBD có
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
a) Xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh chung
=> tam giác ABC = tam giác ADC (c-g-c)
Mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà BA nằm giữa
=> BA là tia phân giác của góc CBD
b), xét tam giác MBC và MBD ,có :
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
A )Ta có tam giác ABC cân tại A
=> ˆABC=ˆACBABC^=ACB^
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
ˆKBC=ˆBCHKBC^=BCH^
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> ˆHBC=ˆKCBHBC^=KCB^
=> ˆABH=ˆACKABH^=ACK^
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
ˆABH=ˆACKABH^=ACK^
=> ABO=ACO (c-g-c)
=> ˆBAO=ˆCAOBAO^=CAO^
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có
DE=DA
EC=AM
Do đó: ΔDEC=ΔDAM
Suy ra: DC=DM
Xét tam giác ACB và tam giác ADB :
+ AD=AC(gt)
+góc BAC=BAD =90 độ
+AB : cạnh chung
=>tam giác ACB =tam giác ADB ( cgc)
=> DB=BC ( hai cạnh tương ứng)
=> góc DBA= góc CBA( hai góc tương ứng)
=> BA là tia phân giác của góc DBC
A) XÉT \(\Delta BDA\)VÀ\(\Delta BCA\)CÓ
\(DA=CA\left(GT\right)\)
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AB LÀ CẠNH CHUNG
\(\Rightarrow\Delta BDA=\Delta BCA\left(C-G-G\right)\)
=>\(\widehat{B_1}=\widehat{B_2}\)
=> BA LÀ PHÂN GIÁC CỦA \(\widehat{CBD}\)
B)
TA CÓ
\(\widehat{B_2}+\widehat{B_4}=180^o\left(KB\right)\)
\(\widehat{B_1}+\widehat{B_3}=180^o\left(KB\right)\)
MÀ \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_4}=\widehat{B_3}\)
XÉT \(\Delta MBD\)VÀ\(\Delta MBC\)CÓ
MB LÀ CẠNH CHUNG
\(\widehat{B_4}=\widehat{B_3}\left(CMT\right)\)
\(BD=BC\left(\Delta BDA=\Delta BCA\right)\)
=>\(\Delta MBD\)=\(\Delta MBC\)(C-G-C)