1) cho a,b,c,d > 0. C/m: \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bdt cosi schwars ta có
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)
\(=\frac{a+b+c+d}{2}\)
Thôi làm luôn tìm ko ra thì chỉ phí time
Ta cm bổ đề
\(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\Leftrightarrow\sqrt{\frac{b+c+d}{a}}\le\frac{a+b+c+d}{2a}\)
\(=\frac{\frac{b+c+d}{a}+1}{2}\ge\sqrt{\frac{b+c+d}{a}}\) (đúng)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế
\(VT\ge\frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2=VP\)
bài này vừa làm hôm qua xong chả nhớ ở web nào cả
nhưng c/m \(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\) bằng AM-GM nhé đợi t tìm link cho đỡ phải làm lại
Xét: \(\sqrt{\frac{a}{b+c+d}}=\frac{\sqrt{a}}{\sqrt{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)
\(\sqrt{\frac{b}{c+d+a}}=\frac{\sqrt{b}}{\sqrt{c+d+a}}=\frac{b}{\sqrt{b\left(c+d+a\right)}}\)
\(\sqrt{\frac{c}{d+a+b}}=\frac{\sqrt{c}}{\sqrt{d+a+b}}=\frac{c}{\sqrt{c\left(d+a+b\right)}}\)
\(\sqrt{\frac{d}{a+b+c}}=\frac{\sqrt{d}}{\sqrt{a+b+c}}=\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\Rightarrow VT=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\\\sqrt{b\left(c+d+a\right)}\le\frac{a+b+c+d}{2}\\\sqrt{c\left(d+a+b\right)}\le\frac{a+b+c+d}{2}\\\sqrt{d\left(a+b+c\right)}\le\frac{a+b+c+d}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\\\frac{b}{\sqrt{b\left(c+d+a\right)}}\ge\frac{2b}{a+b+c+d}\\\frac{c}{\sqrt{c\left(d+a+b\right)}}\ge\frac{2c}{a+b+c+d}\\\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge\frac{2d}{a+b+c+d}\end{matrix}\right.\)
\(\Rightarrow VT\ge\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}\)
\(\Rightarrow VT\ge\frac{2\left(a+b+c+d\right)}{a+b+c+d}\)
\(\Rightarrow VT\ge2\)
\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge2\)
\(\Leftrightarrow\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\ge2\) ( đpcm )
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(\frac{b+c+d}{a}=\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\left(\frac{b+c+d+a}{2a}\right)^2\)
\(\sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\). Tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\geq \frac{2(a+b+c+d)}{a+b+c+d}=2\) (đpcm)
\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)
=> VT >/ 2
Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)
\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)
Dấu '' = '' xảy ra khi a = b + c+ d
b = c+d+a
c = b+a+d
d = a+b+c
Hình như ko có a ; b; c ;d
Ta sẽ chứng minh: \(\sqrt{\frac{x^4+1}{2}}+\frac{4x^2}{x^2+1}\ge3x\)
Thật vậy: \(\Leftrightarrow\left(\sqrt{\frac{x^4+1}{2}}-x\right)+2\left(\frac{2x^2}{x^2+1}-x\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}+2x}-\frac{2x}{x^2+1}\right]\ge0\)
Bây giờ ta quy về chứng minh: \(\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}}\ge\frac{2x}{x^2+1}\Leftrightarrow\left(x^2+1\right)\left(x+1\right)^2\ge4x\left(\sqrt{\frac{x^4+1}{2}+x}\right)\)
\(\Leftrightarrow x^4+1+2x^3+2x\ge2x^2+4x\sqrt{\frac{x^4+1}{2}}\)
\(\Leftrightarrow\frac{x^4+1}{2}+x^3+x\ge x^2+2x\sqrt{\frac{x^4+1}{2}}\)
Bất đẳng thức trên đúng theo AM - GM:
\(\frac{x^4+1}{2}+x^3+x\ge\left(\frac{x^4+1}{2}+x^2\right)+x^2\ge2x\sqrt{\frac{x^4+1}{2}}+x^2\)
Vậy hoàn tất chứng minh trên nên ta có:
\(\sqrt{\frac{a^2+1}{2}}+\frac{4a}{a+1}\ge3\sqrt{a}\);\(\sqrt{\frac{b^2+1}{2}}+\frac{4b}{b+1}\ge3\sqrt{b}\)
\(\sqrt{\frac{c^2+1}{2}}+\frac{4c}{c+1}\ge3\sqrt{c}\); \(\sqrt{\frac{d^2+1}{2}}+\frac{4c}{d+1}\ge3\sqrt{d}\)
Cộng từng vế của các bđt trên. ta được: \(\text{Σ}_{cyc}\sqrt{\frac{a^2+1}{2}}\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\)
\(-4\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\right)\)\(=3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)-8\)
Dấu "=" xảy ra khi a = b = c = 1
tai sao \(\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
Tương tự: \(\sqrt{\frac{b}{a+c+d}}\ge\frac{2b}{a+b+c+d}\) ; \(\sqrt{\frac{c}{a+b+d}}\ge\frac{2c}{a+b+c+d}\); \(\sqrt{\frac{d}{a+b+c}}\ge\frac{2d}{a+b+c+d}\)
Cộng vế với vế: \(VT\ge\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Dấu "=" không xảy ra nên \(VT>2\)