Tìm min của \(\frac{1+sina}{cosa}\)+ \(\frac{1+cosa}{sina}\)
Giúp em bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử các biểu thức đều xác định
a/ \(\frac{1-sina}{cosa}=\frac{cosa\left(1-sina\right)}{cos^2a}=\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{cosa\left(1-sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa}{1+sina}\)
b/ \(=\frac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}=\frac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\frac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\frac{2}{sina}\)
c/ \(=\frac{cosa\left(1-sina\right)+cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{2cosa}{1-sin^2a}=\frac{2cosa}{cos^2a}=\frac{2}{cosa}\)
\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)
\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)
a) Có: `1+tan^2a=1/(cos^2a)`
`<=> 1+(3/5)^2=1/(cos^2a)`
`=> cosa=\sqrt10/4`
`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`
b) Có: `sin^2a + cos^2a=1`
`<=> sin^2a + (1/4)^2=1`
`=> sina=\sqrt15/4`
`=> tana = (sina)/(cosa) = \sqrt15`
Má ơi,tính sai:
a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)
b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)
\(A=\frac{cos^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}=\frac{cos^2a}{cosa+sina}+\frac{\left(cosa-sina\right)\left(cosa+sina\right)}{cosa-sina}\)
\(=\frac{cos^2a}{cosa+sina}+cosa+sina\)
Chà, bạn coi lại đề, \(\frac{1-sin^2a}{cosa+sina}\) hay \(\frac{cos^2a-sin^2a}{cosa+sina}\)
Lời giải:
1.
\(\cos ^2x+\cos ^2x\tan ^2x=\cos ^2x+\cos ^2x.(\frac{\sin x}{\cos x})^2\)
\(=\cos ^2x+\sin ^2x=1\)
2.
\(\frac{2\cos ^2a-1}{\sin a+\cos a}=\frac{2\cos ^2a-(\sin ^2a+\cos ^2a)}{\sin a+\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a+\cos a}=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a+\cos a}\)
\(=\cos a-\sin a\)
3.
\(\frac{1-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a+\sin ^2a-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a-\cos a}\)
\(=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a-\cos a}=-(\cos a+\sin a)\)
4.
\(\frac{1+\sin a}{1-\sin a}-\frac{1-\sin a}{1+\sin a}=\frac{(1+\sin a)^2-(1-\sin a)^2}{(1-\sin a)(1+\sin a)}\)
\(=\frac{1+\sin ^2a+2\sin a-(1+\sin ^2a-2\sin a)}{1-\sin ^2a}=\frac{4\sin a}{\cos ^2a}=\frac{4\tan a}{\cos a}\)
\(\tan\alpha=\frac{3}{2}\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{3}{2}\Rightarrow\sin\alpha=\frac{3}{2}\cos\alpha\)
\(\text{Suy ra: }\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}=\frac{\cos\alpha+\frac{3}{2}\cos\alpha}{\cos\alpha-\frac{3}{2}\cos\alpha}=\frac{\frac{5}{2}\cos\alpha}{-\frac{1}{2}\cos\alpha}=-5\)
Lời giải:
a)
\(A=\frac{4\sin ^2a}{1-\cos ^2\frac{a}{2}}=\frac{4\sin ^2a}{\sin ^2\frac{a}{2}}=\frac{4(2\sin \frac{a}{2}\cos \frac{a}{2})^2}{\sin ^2\frac{a}{2}}=16\cos ^2\frac{a}{2}\)
b)
Sử dụng công thức: \(1-\cos 2a=2\sin ^2a; 1+\cos 2a=2\cos ^2a\) và \(\sin 2a=2\sin a\cos a\) ta có:
\(B=\frac{1+\cos a-\sin a}{1-\cos a-\sin a}=\frac{2\cos ^2\frac{a}{2}-2\sin \frac{a}{2}\cos \frac{a}{2}}{2\sin ^2\frac{a}{2}-2\sin \frac{a}{2}.\cos \frac{a}{2}}\)
\(=\frac{2\cos \frac{a}{2}(\cos \frac{a}{2}-\sin \frac{a}{2})}{2\sin \frac{a}{2}(\sin \frac{a}{2}-\cos \frac{a}{2})}\)
\(=\frac{-\cos \frac{a}{2}}{\sin \frac{a}{2}}=-\cot \frac{a}{2}\)
c) \(45-\frac{\pi}{2}\)??? sao đơn vị nó không thống nhất vậy?