8 bạn chơi chung vơi nhau. Biết rằng trong bất cứ nhóm 3 người nào của 8 bạn đó cũng có 1 người quen với 2 người kia. Chứng minh rằng có thể xếp họ đi chơi trên 4 xe, mỗi xe 2 người quen.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do số cách chia thành 4 nhóm là hữu hạn nên ta có thể giả sử cách chia F gồm 4 cặp: (Ai,Bi)(Ai,Bi) là cách chia có nhiều cặp quen nhau nhất.
Giả sử trong cách chia F vẫn tồn tại một cặp không quen nhau là (A1,B1)
Khi đó trong nhóm 3 người gồm: A2,A1,B1 thìA2 sẽ quen cả A1 và B1
Tương tự: B2 cũng sẽ quen cả A1và B1
Lúc này ta có cách chia khác có nhiều cặp quen nhau hơn cách chia F là:
(A1,B2) (A2,B1), (A3,B3) và (A4,B4)
Do số cách chia thành 4 nhóm là hữu hạn nên ta có thể giả sử cách chia F gồm 4 cặp: (Ai,Bi)(Ai,Bi) là cách chia có nhiều cặp quen nhau nhất.
Giả sử trong cách chia F vẫn tồn tại một cặp không quen nhau là (A1,B1)
Khi đó trong nhóm 3 người gồm: A2,A1,B1 thìA2 sẽ quen cả A1 và B1
Tương tự: B2 cũng sẽ quen cả A1và B1
Lúc này ta có cách chia khác có nhiều cặp quen nhau hơn cách chia F là:
(A1,B2) (A2,B1), (A3,B3) và (A4,B4)
Bạn tham khảo Câu hỏi của Phạm Đức Minh