tìm số nguyên dương n sao cho n3+2019n là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
How to solve in the set positive integer the equation n^3 + 2019 n = k^2?
bạn vào thống kê hỏi đáp mình xem link nhé
#include <bits/stdc++.h>
using namespace std;
long long a[1000006];
long long n;
int main()
{
for(int i=1;i<=1000006;i++){
a[i]=i*i;
}
cin>>n;
for(int i=1;i<=n;i++){
if(a[i]%n==0){cout<<a[i]/n;break;}
}
return 0;
}
\(n^2+3n=k^2\)
\(\Leftrightarrow4n^2+12n=4k^2\)
\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)
Phương trình ước số cơ bản
Đặt \(p^n+144=a^2\left(a\in N\right)\)
\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)
Ta thấy : \(a-12+a+12=2a⋮2\)
\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)
\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)
Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$, \(y>x\)
\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)
Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.
Bạn có thể tham khảo link này ( mình lấy bên diendantoanhoc )
How to solve in the set positive integer the equation n^3 + 2019 n = k^2?