K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

19 tháng 4 2017

a) Thu gọn và sắp xếp:

M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1

= x4 + 2x2 +1

b)M(1) = 14 + 2.12 + 1 = 4

M(–1) = (–1)4 + 2(–1)2 + 1 = 4

Ta có M(x)=\(x^4+2x^2+1\)

\(x^4\)\(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x

Nên \(x^4+2x^2+1>0\)

Tức là M(x)\(\ne0\) với mọi x

Vậy đa thức trên không có nghiệm.

19 tháng 4 2017

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

24 tháng 4 2023

\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm

Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x

=>Q(x) vô nghiệm

31 tháng 3 2020

Ta có: M(x)=x4+2x2+1

1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4

Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4

2. Đặt t=x2 (t\(\ge\)0)

Ta được: M(t)=t2+2t+1=(t+1)2=0

\(\Leftrightarrow t=-1\) (KTM)

\(\Rightarrow\) M(x) vô nghiệm (dpcm)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

8 tháng 1 2022

mk mới lớp 5 nên ko bt

NM
19 tháng 1 2021

Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.

đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1

Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.

suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020

mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)

xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1 

hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1.  Suy ra vô lý. 

Vậy P(x)  không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.

Bài 2: 

\(M\left(3\right)=3^2-4\cdot3+3=0\)

=>x=3 là nghiệm của M(x)

\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)

=>x=-1 không là nghiệm của M(x)