Cho f(x)bằng x mũ 3 + x mũ 5 + x mũ 7 +.....+ x mũ 101
Tính f(1) và f(-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình hướng dẫn cách làm chung nhé
f(x) chia hết cho g(x) ⇔ f(x) nhận các nghiệm của g(x) làm nghiệm
Từ đây dễ rồi :]>
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(f\left(x\right)=5x^4-x^2\left(x-3\right)+3x\left(x-2\right)-6x+2\)
\(=5x^4-x^3+3x^2+3x^2-6x-6x+2\)
\(=5x^4-x^3+6x^2-12x+2\)
\(g\left(x\right)=2x^2\cdot x^2-4x^2+2\left(x+1\right)+5=2x^4-4x^2+2x+7\)
\(f\left(x\right)+g\left(x\right)=7x^4-x^3+2x^2-10x+9\)
\(f\left(x\right)-g\left(x\right)=3x^4-x^3+10x^2-14x-5\)
1:
a: f(3)=2*3^2-3*3=18-9=9
b: f(x)=0
=>2x^2-3x=0
=>x=0 hoặc x=3/2
c: f(x)+g(x)
=2x^2-3x+4x^3-7x+6
=6x^3-10x+6
\(f\left(x\right)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\)
\(f\left(x\right)=\left(x^4+3x^4\right)-\left(x^3-2x^3\right)-\left(3x^2+x^2\right)+x-1\)
\(f\left(x\right)=4x^4+x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+x^2-x^3+x-5+5x^3-x^2-3x^4\)
\(g\left(x\right)=\left(x^4-3x^4\right)+\left(5x^3-x^3\right)+\left(x^2-x^2\right)+x-5\)
\(g\left(x\right)=-2x^4+4x^3+x-5\)
`@` `\text {Ans}`
`\downarrow`
`a,`
\(f(x) -3x^2 + x - 1 + x^4 - x^3 - x^2 + 3x^4 + 2x^3\)
`= (x^4 +3x^4) + (-x^3 +2x^3) + (-3x^2 - x^2) + x - 1`
`= 4x^4 + x^3 -4x^2 + x -1`
\(g(x) = x^4 + x^2 - x^3 + x - 5 + 5x^3 - x^2 - 3x^4\)
`= (x^4-3x^4) + (-x^3+5x^3) + (x^2 - x^2) + x -5`
`= -2x^4 + 4x^3 +x - 5`
a)
f(x)=9-x5+4x-2x3+x2-7x4
= -x5-7x4-2x3+x2+4x+9
g(x)=x5-9+2x2+7x4+2x3-3x
=x5+7x4+2x3+2x2-3x-9
b)h(x)=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
= -x5+(-7x4)+(-2x3)+x2+4x+9+x5+7x4+2x3-3x+(-9)+2x2
=(-x5+x5)+(-7x4+7x4)+(-2x3+2x3)+(x2+2x2)+(4x-3x)+(-9+9)
= 3x2+x
c)h(x)=3x2+x
Ta có:3x2+x=0
x(3x+1)=0
TH1:x=0
TH2:3x+1=0
=>x=-1/3
Vậy=0 và -1/3 là nghiệm của h(x)
Cho f( x ) = x mũ 2005- 2006.x mũ 2004+ 2006.x mũ 2003-....- 2006.x mũ 2+ 2006.x mũ 1.
Tính f( 2005)
x=2005
nên x+1=2006
\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)
\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)
=x=2005