A=1/4^2+1/6^2+...+1/160^2
Chứng minh : 1/8<A<3/16
viết lời giải giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuẩn chuẩn. :)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{160^2}=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)\)
+) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}>\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{80}.\frac{1}{81}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{80}-\frac{1}{81}\right)\)
\(=\frac{1}{4}+\frac{1}{3}-\frac{1}{81}>\frac{1}{4}+\frac{1}{3}-\frac{1}{12}=\frac{1}{2}\)
=> \(A=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)>\frac{1}{4}.\frac{1}{2}=\frac{1}{8}\)
+) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}< \frac{1}{4}+\left(\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{80.79}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{79}-\frac{1}{80}\right)\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{80}< \frac{3}{4}\)
=> \(A=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)< \frac{1}{4}.\frac{3}{4}=\frac{3}{16}\)
\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)
\(4A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)
\(3A=4A-A=1-\frac{1}{2^{100}}<1\)
\(A<\frac{1}{3}\)
\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)
\(2^2.A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)
\(2^2.A-A=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\right)\)
\(4.A-A=1-\frac{1}{2^{100}}< 1\)
\(3A< 1\)
\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)
1.tính nhanh :(6/8+1).(6/18+1).(6/30+1)...(6/10700+1)
2.chứng minh rằng :A=1/2!+1/3!+1/4!+...+1/1000!
Bài 1.
\(A=\left(\frac{6}{8}+1\right)\left(\frac{6}{18}+1\right)\left(\frac{6}{30}+1\right)...\left(\frac{6}{10700}+1\right)\)
\(A=\frac{14}{8}\times\frac{24}{18}\times\frac{36}{30}\times...\times\frac{10706}{10700}\)
\(A=\frac{2\times7}{1\times8}\times\frac{3\times8}{2\times9}\times\frac{4\times9}{3\times10}\times...\times\frac{101\times106}{100\times107}\)
\(A=\frac{2\times7\times3\times8\times...\times101\times106}{1\times8\times2\times9\times...\times100\times107}\)
\(A=\frac{\left(2\times3\times4\times...\times101\right)\times\left(7\times8\times9\times...\times106\right)}{\left(1\times2\times3\times...\times100\right)\times\left(8\times9\times10\times...\times107\right)}\)
\(A=\frac{101\times7}{107}\)
\(A=\frac{707}{107}\)
Bài 2.
Thiếu đề bài
P/S : bài 1 làm chưa chắc đúng đâu nha.