K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

Cô ơi nếu em chưa học về mấy cái BĐT trên thì giải như nào ạ?

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Đỗ Hoàng Nhật Minh:

BĐT Cô si là dạng đơn giản nhất rồi. Nếu bạn chưa học thì bạn có thể chứng minh luôn nó ra rồi áp dụng.

Như bài phía trên, thay vì áp dụng luôn BĐT Cô-si để ra được $\frac{1}{a}+a\geq 2$ thì bạn đi chứng minh $\frac{1}{a}+a\geq 2$ bằng cách xét hiệu:

$\frac{1}{a}+a-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}\geq 0$ với mọi $a>0$

Tương tự với $\frac{1}{b}+b, \frac{1}{c}+c$

Bạn có hiểu không?

3 tháng 12 2019

Xét a = b = c = 1 thì thỏa mãn bài ra

Xét a ,b,c khác 1. do a,b,c có vai trò như nhau nên giả sử \(a\le b\le c\)

Áp dụng BĐT cô-si cho 3 số a+b+1,1-a,1-b, ta có :

\(\left(a+b+1\right)\left(1-a\right)\left(1-b\right)\le\left(\frac{a+b+1+1-a+1-b}{3}\right)^3=1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\le\frac{1}{a+b+1}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\frac{1-c}{a+b+1}\)

Mà \(\frac{a}{b+c+1}\le\frac{a}{a+b+1};\frac{b}{a+c+1}\le\frac{b}{a+b+1}\)

\(\Rightarrow\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\le\frac{a}{a+b+1}+\frac{b}{a+b+1}+\frac{c}{a+b+1}\)

do đó : \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\le\frac{a+b+c}{a+b+1}+\frac{1-c}{a+b+1}=1\)

dấu " = " xảy ra khi a = b = c = 0

vậy ...

NV
14 tháng 9 2020

a/

\(VT\ge\frac{\frac{1}{2}\left(a+b\right)^2}{a+b}+\frac{\frac{1}{2}\left(b+c\right)^2}{b+c}+\frac{\frac{1}{2}\left(c+a\right)^2}{c+a}=a+b+c\ge3\sqrt[3]{abc}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)\left(y^2+y^2\right)\ge xy\left(x^2+y^2\right)\)

\(\Rightarrow VT\le\frac{1}{a+bc\left(b^2+c^2\right)}+\frac{1}{b+ca\left(a^2+c^2\right)}+\frac{1}{c+ab\left(a^2+b^2\right)}\)

\(VT\le\frac{1}{a+\frac{1}{a}\left(b^2+c^2\right)}+\frac{1}{b+\frac{1}{b}\left(a^2+c^2\right)}+\frac{1}{c+\frac{1}{c}\left(a^2+b^2\right)}\)

\(VT\le\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)

\(VT\le\frac{a+b+c}{\frac{1}{3}\left(a+b+c\right)^2}=\frac{3}{a+b+c}\le\frac{3}{3\sqrt[3]{abc}}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

24 tháng 8 2018

Vì a+b+c=0=>(a+b)=-c. Tương tự:(b+c)=-a;(a+c)=-b.

Ta có A=:\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

\(=\frac{a^2}{\left(a-b\right).\left(-c\right)-c^2}+tươngtự\)

\(=\frac{a^2}{-ca+bc-c^2}\)+ tương tự

\(=\frac{a^2}{c\left(b-c-a\right)}+tươngtự\)

\(=\frac{a^2}{c\left(b-\left(c+a\right)\right)}\)+ tương tự nha 

\(=\frac{a^2}{c\left(b-\left(-b\right)\right)}+tươngtự=\frac{a^2}{2bc}+tươngtự\)

Sau đó ta có :\(\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2bc}\)

=\(\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b\right)^3-3ab\left(a+b\right)+c^3}{2abc}\)

\(=\frac{\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)}{2abc}\)=\(\frac{0-0-3ab\left(-c\right)}{2abc}\)(do a+b+c=0)

=\(\frac{3abc}{2abc}=\frac{3}{2}\)Ok r bạn

23 tháng 7 2019

a) \(A=\frac{2006^3+1}{2006^2-2005}=\frac{\left(2006+1\right)\left(2006^2-2006+1\right)}{2006^2-2005}=\frac{2007\left(2006^2-2005\right)}{2006^2-2005}=2007\)

Nhìn thì ta nhận biết được tử số có chứa hđt thì mình nghĩ nếu bạn chịu suy nghĩ sẽ ra thôi. Câu b cũng cx dùng hđt thôi 

b) \(\frac{2006^3-1}{2006^2+2007}=\frac{\left(2006-1\right)\left(2006^2+2006+1\right)}{2006^2+2007}\)

\(=\frac{2005\left(2006^2+2007\right)}{2006^2+2007}=2005\)

Hok tốt nha !

27 tháng 12 2019

Đặt: \(\frac{a}{3}=\frac{b}{6}=\frac{c}{8}=k\)

=> a = 3. k

b = 6 . k = 2. 3. k

c = 8 k = 2 . 4. k

=> BCNN ( a; b; c ) =  3 . 2. 4 . k = 24 . k

Mà theo bài ra :  BCNN ( a; b ; c ) = 504

=> 24 k = 504 

=> k = 21.

=> a = 3. 21 = 63 ; b = 6. 21  = 126 ;  c = 8 . 21 = 168

29 tháng 9 2017

ap dung bdt am gm

\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)

\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)

tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)

\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)

tiep tuc ap dung bat cauchy-schwarz dang engel ta co

\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)

dau = xay ra \(\Leftrightarrow a=b=c=1\)

1 tháng 9 2020

Dạ em cảm ơn ạ

NV
31 tháng 8 2020

Sửa đề: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow\frac{a^2c+b^2a+c^2b}{abc}+\frac{3}{a+b+c}\ge4\)

\(\Leftrightarrow P=a^2c+b^2a+c^2b+\frac{3}{a+b+c}\ge4\)

Ta có:

\(a^2c+a^2c+b^2a\ge3\sqrt[3]{a^3.\left(abc\right)^2}=3a\)

\(b^2a+b^2a+c^2b\ge3\sqrt[3]{b^3\left(abc\right)^2}=3b\)

\(c^2b+c^2b+a^2c\ge3\sqrt[3]{c^3\left(abc\right)^2}=3c\)

Cộng vế với vế: \(a^2c+b^2a+c^2b\ge a+b+c\)

\(\Rightarrow P\ge a+b+c+\frac{3}{a+b+c}=\frac{a+b+c}{3}+\frac{3}{a+b+c}+\frac{2}{3}\left(a+b+c\right)\)

\(\Rightarrow P\ge2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}+\frac{2}{3}.3\sqrt[3]{abc}=4\)

Dấu "=" xảy ra khi \(a=b=c=1\)