chứng tỏ rằng B= 1/2^2 + 1/3^2 +1/4^2+1/5^2+1/6^2+1/7^2+1/8^2 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2< 1/3.4
........................
1/8^2<1/7.8
Vậy B < 1/1.2+1/2.3+1/3.4+....+1/7.8
B< 1-1/8
B<7.8<1
=> B<1
Giải:
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(.................\)
\(\dfrac{1}{8^2}=\dfrac{1}{8.8}< \dfrac{1}{7.8}\)
Cộng vế theo vế ta được:
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
Vậy \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{8^2}< 1\) (Đpcm)
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
................
1/8²<1/7.8
=>B<1/1.2+1/2.3+1/3.4+...+1/7.8
=>B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
=>B<1-1/8
Vậy B < 1
b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8
b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8
b=1-1/8
b=7/8
<=>b<1
k cho mink nha
b=1/22+1/32+1/42+...+1/82<1/1.2+1/2.3+1/3.4+......+1/7.8
b=1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8
b=1-1/8
b=7/8
<=>b<1
owo
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< 1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
mink nhanh nhất đó bạn,
ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1\times2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\times3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\times4}\)
. . . . . . .
\(\dfrac{1}{8^2}< \dfrac{1}{7\times8}\)
_________________________________
\(\Rightarrow\)\(B< \)\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\right)\)
\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< 1-\dfrac{1}{8}\)
\(\Rightarrow B< 1\)
\(\Rightarrowđpcm\)
b)Ta có:\(A=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{16.\left(1+2+3+...+16\right)}\)
\(=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)
\(=1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\)
\(=1+1,5+2+...+8,5\)
\(=\frac{\left(8,5+1\right).\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<\)
B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
B=\(1-\frac{1}{8}=\frac{8}{8}-\frac{7}{8}=\frac{1}{8}<2\)
Vậy 1/8<2 hay 1/8<16/8
A = 1/2^2 + 1/3^2 +.. + 1/8^2 < 1/1.2 + 1/2.3 +... + 1/7.8 = 1 - 1/2 + 1/2 -1/3 +... + 1/7 - 1/8
= 1 - 1/8 < 1
\(\Rightarrowđpcm\)
\(tíchnhaminhftchlaij\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=\frac{2-1}{1.2}+......+\frac{8-7}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{8}=1-\frac{1}{8}< 1\)
ta có điều phải chứng minh
Ta có : 1/2^2 < 1/1.2
1/3^2 < 1/2.3
1/4^2 < 1/3.4
...
1/8^2 < 1/7.8
=> B < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/7.8
B < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
B < 1 - 1/8 < 1
=> B < 1 (đpcm)