K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

2 tháng 7 2021

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2

13 tháng 12 2021

x=0

13 tháng 12 2021

\(=\left(9x^2-6x+1\right)+4=\left(3x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{3}\)

30 tháng 5 2018

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

26 tháng 12 2019

Ta có: \(N=-9x^2+6x+5\)

\(=-\left(9x^2-6x-5\right)\)

\(=-\left(9x^2-6x+1-6\right)\)

\(=-\left(3x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

29 tháng 12 2021

a: \(M=\dfrac{2\left(1-3x\right)\left(1+3x\right)}{3x\left(x+2\right)}\cdot\dfrac{3x}{2\left(1-3x\right)}=\dfrac{3x+1}{x+2}\)

29 tháng 12 2021

mình rất cần cả 3 phần mừ