Biết a, b>0, a+b=3. Tìm min S=(1+2/a)(1+2/b).
Giúp em với, mai em kiểm tra rồi.:((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(1) =1+a+b =0=>a+b=-1 (1)
A(2) =4+2a+b =5 =>2a + b =5-4=1 (2)
từ (1) (2) =>2a+b-(a+b)=1-(-1)
2a-a=a=1+1=2
a+b=-1
2+b=-1=>b=-1-2=-3
vậy A(3) =9+6-3=12
a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x^2\right)^2}=2\)
⇔ \(\left|x^2\right|=2\)
⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)
⇔ x2 - 2 = 0
⇔ ( x - √2 )( x + √2 ) = 0
⇔ x - √2 = 0 hoặc x + √2 = 0
⇔ x = ±√2
b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )
⇔ \(3\sqrt{x+1}=8\)
⇔ \(\sqrt{x+1}=\frac{8}{3}\)
⇔ \(x+1=\frac{64}{9}\)
⇔ \(x=\frac{55}{9}\)( tm )
c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )
⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)
⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)
⇔ \(7\sqrt{x-3}=14\)
⇔ \(\sqrt{x-3}=2\)
⇔ \(x-3=4\)
⇔ \(x=7\)( tm )
d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )
⇔ \(\left|3x-1\right|=5\)
⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x+2\right)^2}=6\)
⇔ \(\left|x+2\right|=6\)
⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)
\(b)\)\(ĐK:x\ge0\)
\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)
Vậy \(x=\frac{64}{9}\)
\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)
Vậy \(x\in\hept{2;\frac{-4}{3}}\)
-Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)
-Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)
Vậy \(x=4;x=-8\)
a) \(x-\dfrac{3}{5}=\dfrac{4}{-10}\)
\(x=\dfrac{4}{-10}+\dfrac{3}{5}\)
\(x=\dfrac{-4}{10}+\dfrac{6}{10}\)
\(x=\dfrac{1}{5}\)
b) \(\dfrac{3}{x}-2=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}-2+2=\dfrac{4}{x}+4+2\)
\(\dfrac{3}{x}=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}=\dfrac{4x+4}{x}\)
\(3x=\left(4x+4\right)x\)
\(3x=5x\cdot x+4x\)
\(3x=x\left(5x+4\right)\)
\(3=5x+4\)
\(5x=-1\)
\(x=\dfrac{-1}{5}\)
Đây :
Ta có: \(b,a-a,b=2,7\)
Suy ra: \(\overline{ba}-\overline{ab}=27\)(nhân hai vế với 10)
Suy ra: \(10b+a-10a-b=27\)
Thu gọn, ta được: \(9\left(b-a\right)=27\)
Suy ra: \(b-a=3\)
Ta có: \(\hept{\begin{cases}a+b=11\\b-a=3\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=7\end{cases}}}\)
Vậy .........
câu 1:
1+x^3+y^2
câu 2
a, c=a+b=(\(x^2\)-2y+xy+1)+(\(x^2\)+y-x^2y^2-1)
=x^2-2y+xy+1+x^2+y-x^2y^2-1
= (x^2+x^2)+(-2y+y)+(1-1)+xy
= 2x^2-y+xy
b,c=b-a=(x^2-2y+xy+1)-(x^2 +y-x^2y^2-1)
= x^2-2y+xy+1-x^2-y+x^2y^2+1
=(x^2-x^2)+(-2y-y)+(1+1)+xy
=2x^2-3y+2+xy
cho mik nha
Với a; b > 0
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{3}\)
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{9}{4}\)=> \(\frac{1}{ab}\ge\frac{4}{9}\)
Khi đó: \(S=\left(1+\frac{2}{a}\right)\left(1+\frac{2}{b}\right)=1+2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{ab}\ge1+2.\frac{4}{3}+4.\frac{4}{9}=\frac{49}{9}\)
Dấu "=" xảy ra <=> a = b = 3/2
vậy min S = 49/9