cho x= 1+2+2^2+.................................+2^2015
y=2^2016
chứng minh rằng x,y là hai số tự nhiên liên tiếp nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 1+2+22+23+.....+22015
2x = 2+22+23+24+....+22016
2x- x = 22016 - 1
=> x = 22016 - 1
Có y - x = 22016 - (22016 - 1) = 1
=> x và y là 2 số tự nhiên liên tiếp (Đpcm)
Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
x = 1+2+2^2+2^4+2^6+...+2^2010
2x = 2+2^2+.....+2^2011
2x-x = 2^2011 - 1 = x
y = 2^2011
=> ĐCCM
Ta có : \(X=1+2^2+2^4+.....+2^{2010}\)
\(\Rightarrow2^2X=2^2+2^6+2^8+.....+2^{2012}\)
\(4X=2^2+2^6+2^8+.....+2^{2012}\)
\(4X-X=2^{2012}-1\)
\(3X=2^{2012}-1\)
\(X=\frac{2^{2012}-1}{3}\) (sai đề nhé )
ta có: X=\(1+2+2^2...2^{2010}\Rightarrow2X=2+2^2+...2^{2011}\)
\(\Rightarrow2X-X=\left(2+2^2...2^{2011}\right)-\left(1+2+...2^{2010}\right)\)
\(\Rightarrow X=2^{2011}-1\)
xét hiêu Y-X=\(2^{2011}-\left(2^{2011}-1\right)=1\)
vậy X,Y là 2 số tự nhiên liên tiếp
Ta có
2x=2+2^2+2^3+...+2^2016
=>2x-x=(2+2^2+2^3+...+2^2016)-(1+2+2^2+...+2^2015)
=>x=2^2016-1
Mà y =2016
Nên x,y là 2 so tu nhien lien tiep
\(x=1+2+2^2+....+2^{2015}\)
\(2x=2+2^3+2^4+...+2^{2016}\)
\(2x-x=\left(2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+....+2^{2015}\right)\)
\(x=2^{2016}-1\)
Vì \(x=2^{2016}-1;y=2^{2016}\)
Vậy x và y là 2 số tự nhiên tiếp nhau