Cho tam giác ABC nhọn. Cm: \(BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{NAC}\) chung
Do đó: ΔAMB∼ΔANC(g-g)
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
\(\widehat{NAM}\) chung
Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AMN}=\widehat{ABC}\)(hai góc tương ứng)
b) Gọi giao điểm của AH và BC là K
Xét ΔCHK vuông tại K và ΔCBN vuông tại N có
\(\widehat{HCK}\) chung
Do đó: ΔCHK∼ΔCBN(g-g)
Suy ra: \(\dfrac{CH}{CB}=\dfrac{CK}{CN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CH\cdot CN=CB\cdot CK\)
Xét ΔBHK vuông tại K và ΔBCM vuông tại M có
\(\widehat{HBK}\) chung
Do đó: ΔBHK∼ΔBCM(g-g)
Suy ra: \(\dfrac{BH}{BC}=\dfrac{BK}{BM}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot BM=BC\cdot BK\)
Ta có: \(BH\cdot BM+CH\cdot CN\)
\(=BC\cdot BK+BC\cdot CK\)
\(=BC^2=a^2\)(đpcm)
bạn tự vẽ hình nhé ^.^
từ B kẻ BH vuông góc với AC \(\Rightarrow SABC=\frac{1}{2}AC\cdot BH\)(1)
ap dung ti so luong giac trong tam giac ABH co \(BH=sinA\cdot AB\)
thay vao(1) ta co \(SABC=\frac{1}{2}AB\cdot AC\cdot sinA\left(DPCM\right)\)
Giải :
\(S_{ABD}+S_{ACD}=S_{ABC}\).
\(\frac{1}{2}AB\cdot AD\cdot\sin\frac{A}{2}+\frac{1}{2}AD\cdot AC\cdot\sin\frac{A}{2}=\frac{1}{2}AB\cdot AC\cdot\sin A\)
\(\Rightarrow\frac{1}{2}AD\cdot\sin\frac{A}{2}\left(AB+AC\right)=\frac{1}{2}AB\cdot AC\cdot2\cdot\sin\frac{A}{2}\cdot\cos\frac{A}{2}\)
\(\Rightarrow\frac{2\cdot AB\cdot AC\cdot\cos\frac{A}{2}}{AB+AC}\) (đpcm).
a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp
\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)
\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)
\(=AH^2.AC=AF.AC.AC=AF.AC^2\)
c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)
\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)
\(\Rightarrow AH^3=BC.BE.CF\)
Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)
Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)
\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)
Ta có hình vẽ như sau:
Trong tam giác vuông ACH có:
AC2=AH2+HC2=AH2+(BC-BH)2=AH2+BC2+BH2-2BCBH
Trong tam giác vuông ABH có:
AH2+BH2=AB2 và BH=AB. cosB hay BH=c.cosB=> ĐPCM