Trong mặt phẳng Oxy cho tam giác ABC với A(9;3), B(0;6), C(8;0). Gọi H là chân đường cao vẽ từ từ đỉnh A xuống cạnh BC.
Gọi I, K lần lượt là hình chiếu của A trên trục Ox, Oy. Chứng minh I, H, K thẳng hằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.
B(4;5), C(-3;2)
Phương trình đường cao AH đi qua A(2;-1) nhận là VTPT là:
7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0
Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.
\(\overrightarrow{AB}=\left(4;-3\right)\Rightarrow AB=5\)
\(\overrightarrow{AC}=\left(6;0\right)\Rightarrow AC=6\)
\(\overrightarrow{BC}=\left(2;3\right)\Rightarrow BC=\sqrt{13}\)
Chu vi tam giác: \(AB+AC+BC=11+\sqrt{13}\)
vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1
\(AB=\sqrt{\left(0+1\right)^2+\left(2+3\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left(2+1\right)^2+\left(1+3\right)^2}=\sqrt{3^2+4^2}=5\)
\(BC=\sqrt{\left(2-0\right)^2+\left(1-2\right)^2}=\sqrt{5}\)
=>\(C=\sqrt{26}+5+\sqrt{5}\left(cm\right)\)
\(AB=\sqrt{\left(5-1\right)^2+\left(-3+1\right)^2}=2\sqrt{5}\)
\(AC=\sqrt{\left(0-1\right)^2+\left(1+1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(0-5\right)^2+\left(1+3\right)^2}=\sqrt{29}\)
=>C=3 căn 5+căn 29
\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{5}\)
\(\overrightarrow{AC}=\left(-2;2\right)\Rightarrow AC=2\sqrt{2}\)
\(BC=\left(-3;4\right)\Rightarrow BC=5\)
Chu vi tam giác ABC: \(AB+AC+BC=\sqrt{5}+2\sqrt{2}+5\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;-2\right)\\\overrightarrow{AC}=\left(4;-2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=-1.4+\left(-2\right).\left(-2\right)=0\)
\(\Rightarrow\Delta ABC\) vuông tại A
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
Ta có \(I\left(9;0\right)\) ; \(K\left(0;3\right)\)
\(\overrightarrow{BC}=\left(8;-6\right)=2\left(4;-3\right)\) đường thẳng BC nhận (3;4) là 1 vtpt
Phương trình BC: \(3\left(x-8\right)+4y=0\Leftrightarrow3x+4y-24=0\)
Phương trình đường thẳng AH:
\(4\left(x-9\right)-3\left(y-3\right)=0\Leftrightarrow4x-3y-27=0\)
Tọa độ H: \(\left\{{}\begin{matrix}3x+4y-24=0\\4x-3y-27=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{36}{5};\frac{3}{5}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IH}=\left(-\frac{9}{5};\frac{3}{5}\right)\\\overrightarrow{IK}=\left(-9;3\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IK}=5\overrightarrow{IH}\Leftrightarrow\) I;K;H thẳng hàng