K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)M=3x2y-2xy2+2x2y+2xy+3xy2

       =\(5x^2y+xy^2+2xy\)

     N=2x2y+xy+xy2-4xy2-5xy

     =\(2x^2y-3xy^2-4xy\)

b) M-N=(\(5x^2y+xy^2+2xy\))-(\(2x^2y-3xy^2-4xy\))

           =\(5x^2y+xy^2+2xy\)\(-\)\(2x^2y+3xy^2+4xy\)

           =\(3x^2y+4xy^2+6xy\)

M+N=\(5x^2y+xy^2+2xy\)\(+\)\(2x^2y-3xy^2-4xy\)

        =\(7x^2y-2xy^2-2xy\)

c) Ta có P(x)=0

\(\Rightarrow\)6-2x=0

\(\Rightarrow\)x=3

Vậy x=3 là nghiệm của đa thức P(x)

24 tháng 5 2021

cảm ơn bạn nha

 

15 tháng 9 2023

\(A=7x^3y-\dfrac{1}{2}xy-4x^3-5x-2+5xy\)

\(=7x^3y+\left(5-\dfrac{1}{2}\right)xy-4x^3-5x-2\)

\(=7x^3y+4,5xy-4x^3-5x-2\)

Đa thức A có Bậc 4.

\(B=-\dfrac{4}{3}xyz-\dfrac{1}{3}xy^2x+4-5xyz+3x^2y^2\)

\(=-\left(\dfrac{4}{3}+5\right)xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)

\(=-\dfrac{19}{3}xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)

Đa thức B có Bậc 4.

 

17 tháng 3 2022

\(a,P=7xy^3-2x^2y^2-5xy^3-3x^2y^2-5\)

\(\Rightarrow P=2xy^3-5x^2y^2-5\)

b, Thay \(x=-2\) vào biểu thức \(P\) ta được :

\(P=2.\left(-2\right).y^2-5.\left(-2\right)^2.y^2-5\)

\(=-4y^2-y^2-5\)

\(=-5y^2-5\)

Vậy tại \(x=-2\) ta được \(P=-5y^2-5\)

Thay \(y=-1\) vào biểu thức \(P\) ta được 

\(P=2x.\left(-1\right)^3-5x^2.\left(-1\right)^2-5\)

\(=-2x-4x^2-5\)

\(=-4x^2-2x-5\)

Vậy tại \(y=-1\) ta được \(P=-4x^2-2x-5\)

6 tháng 9 2021

a. = 2xy + 2x2 - 4xy2 - 2

6 tháng 9 2021

a,  2xy +2x2 - 4xy- 2     ;    b, -3x2y -2x2y + y       ;          c, 3x3 - 2y - 3

a: A = -2xy + 3/2xy^2 + 1/2xy^2 + xy = -2xy + 2xy^2 + xy = 2xy^2 - xy

b: B = xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z = 3xy^2z - xyz

c: C = 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3 = 7x^4 + 3x^2y^3 - 2x^2

d: D = 3/4xy^2 - 2xy - 1/2xy^2 + 3xy = 5/4xy^2 + xy

e: E = 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4 = -2x^2 - y^3 + 2z^4

f: F = 3xy^2z + xy^2z - xyz + 2xy^2z - 3xyz = 6xy^2z - 2xyz

a: A=-2xy+3/2xy^2+1/2xy^2+xy

=-2xy+xy+3/2xy^2+1/2xy^2

=2xy^2-xy

b: \(B=xy^2z+2xy^2z-xyz-3xy^2z+xy^2z\)

\(=xy^2z\left(1+2-3+1\right)-xyz=xy^2z-xyz\)

c: \(=4x^2y^3-x^2y^3+x^4+6x^4-2x^2\)

\(=7x^4-x^2+3x^2y^3\)

d: \(=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+3xy-2xy\)

=1/4xy^2+xy

e: \(=2x^2-4x^2-3y^3+2y^3+3z^4-z^4\)

\(=-2x^2-y^3+2z^4\)

f: \(=xy^2z+3xy^2z+2xy^2z-xyz-3xyz\)

\(=6xy^2z-4xyz\)

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1

 

1 tháng 4 2022

A=\(\dfrac{-1}{2}xy^2.2x^3y.2x^3y\)

A=\(2x^7y^4\)

1 tháng 4 2022

A=−12xy2.2x3y.2x3y−12xy2.2x3y.2x3y

A=2x7y4

9 tháng 11 2023

\(a,A=2x^3y-3xy^2+5x^3y-xy^2+2\\=(2x^3y+5x^3y)+(-3xy^2-xy^2)+2\\=7x^3y-4xy^2+2\)

Bậc của đa thức A: 3 + 1 = 4.

\(b,\) Thay \(x=1;y=-1\) vào \(A\), ta được:

\(A=7\cdot1^3\cdot\left(-1\right)-4\cdot1\cdot\left(-1\right)^2+2\)

\(=-7-4+2=-9\)

a, Nếu 7x-1\(\ge0\Leftrightarrow x>\frac{1}{7}\)

=>|7x-1|=7x-1

Khi đó,ta có:

A=2x2+(7x-1)-(5-x+2x2)

=2x2+7x-1-5+x-2x2

=(2x2-2x2)+(7x+x)-(1+5)

=8x-6

Nếu 7x-1<0\(\Leftrightarrow x< \frac{1}{7}\)

thì |7x-1|=1-7x

Khi đó ,ta có:

A=2x2+(1-7x)-(5-x+2x2)

=  2x2+1-7x-5+x-2x2

=(2x2-2x2)+(-7x+x)+(1-5)

=-6x-4

b, Với \(x\ge\frac{1}{7}\), để A=2 thì 

     8x-6=2

=>8x=8

=>x=1(t/m)

Với x< 1/7, để A=2 thì 

-6x-4=2

=>-6x=6

=>x=-1(t/m)

Vậy \(x=\pm1\)thì A=2

25 tháng 4 2018

Cho đa thức A(x) = x + 1 + 3x2. (2x - 1) - 5x

a) Thu gọn đa thức

A(x) = x + 1 + 3x2. (2x - 1) - 5x

= x + 1 + 6x3 - 3x2 - 5x

= 6x3 - 3x2 - 4x + 1

b) x = 1 có là nghiệm đa thức A(x)

Thay x = 1 vào đa thức A(x) :

A(1) = 6 . 13 - 3 . 12 - 4 . 1 + 1 = 0

Vậy x = 1 là nghiệm của đa thức A(x)